Switch to: Citations

Add references

You must login to add references.
  1. No Elementary Embedding from V into V is Definable from Parameters.Akira Suzuki - 1999 - Journal of Symbolic Logic 64 (4):1591-1594.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Proper forcing and remarkable cardinals.Ralf-Dieter Schindler - 2000 - Bulletin of Symbolic Logic 6 (2):176-184.
    The present paper investigates the power of proper forcings to change the shape of the universe, in a certain well-defined respect. It turns out that the ranking among large cardinals can be used as a measure for that power. However, in order to establish the final result I had to isolate a new large cardinal concept, which I dubbed “remarkability.” Let us approach the exact formulation of the problem—and of its solution—at a slow pace.Breathtaking developments in the mid 1980s found (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • (1 other version)A method of modelling the formalism of set theory in axiomatic set theory.A. H. Kruse - 1963 - Journal of Symbolic Logic 28 (1):20-34.
    As is well known, some paradoxes arise through inadequate analysis of the meanings of terms in a language, an adequate analysis showing that the paradoxes arise through a lack of separation of an object theory and a metatheory. Under such an adequate analysis in which parts of the metatheory are modelled in the object theory, the paradoxes give way to remarkable theorems establishing limitations of the object theory.Such a modelling is often accomplished by a Gödel numbering. Here we shall use (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Left Distributive Law and the Freeness of an Algebra of Elementary Embeddings.Richard Laver & J. Oikkonen - 2002 - Bulletin of Symbolic Logic 8 (4):555-560.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Elementary embeddings and infinitary combinatorics.Kenneth Kunen - 1971 - Journal of Symbolic Logic 36 (3):407-413.
    One of the standard ways of postulating large cardinal axioms is to consider elementary embeddings,j, from the universe,V, into some transitive submodel,M. See Reinhardt–Solovay [7] for more details. Ifjis not the identity, andκis the first ordinal moved byj, thenκis a measurable cardinal. Conversely, Scott [8] showed that wheneverκis measurable, there is suchjandM. If we had assumed, in addition, that, thenκwould be theκth measurable cardinal; in general, the wider we assumeMto be, the largerκmust be.
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • The wholeness axiom and Laver sequences.Paul Corazza - 2000 - Annals of Pure and Applied Logic 105 (1-3):157-260.
    In this paper we introduce the Wholeness Axiom , which asserts that there is a nontrivial elementary embedding from V to itself. We formalize the axiom in the language {∈, j } , adding to the usual axioms of ZFC all instances of Separation, but no instance of Replacement, for j -formulas, as well as axioms that ensure that j is a nontrivial elementary embedding from the universe to itself. We show that WA has consistency strength strictly between I 3 (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Consistency of V = HOD with the wholeness axiom.Paul Corazza - 2000 - Archive for Mathematical Logic 39 (3):219-226.
    The Wholeness Axiom (WA) is an axiom schema that can be added to the axioms of ZFC in an extended language $\{\in,j\}$ , and that asserts the existence of a nontrivial elementary embedding $j:V\to V$ . The well-known inconsistency proofs are avoided by omitting from the schema all instances of Replacement for j-formulas. We show that the theory ZFC + V = HOD + WA is consistent relative to the existence of an $I_1$ embedding. This answers a question about the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Wholeness Axioms and V=HOD.Joel David Hamkins - 2001 - Archive for Mathematical Logic 40 (1):1-8.
    If the Wholeness Axiom wa $_0$ is itself consistent, then it is consistent with v=hod. A consequence of the proof is that the various Wholeness Axioms are not all equivalent. Additionally, the theory zfc+wa $_0$ is finitely axiomatizable.
    Download  
     
    Export citation  
     
    Bookmark   8 citations