Switch to: Citations

Add references

You must login to add references.
  1. Large cardinals and definable counterexamples to the continuum hypothesis.Matthew Foreman & Menachem Magidor - 1995 - Annals of Pure and Applied Logic 76 (1):47-97.
    In this paper we consider whether L(R) has “enough information” to contain a counterexample to the continuum hypothesis. We believe this question provides deep insight into the difficulties surrounding the continuum hypothesis. We show sufficient conditions for L(R) not to contain such a counterexample. Along the way we establish many results about nonstationary towers, non-reflecting stationary sets, generalizations of proper and semiproper forcing and Chang's conjecture.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Laver sequences for extendible and super-almost-huge cardinals.Paul Corazza - 1999 - Journal of Symbolic Logic 64 (3):963-983.
    Versions of Laver sequences are known to exist for supercompact and strong cardinals. Assuming very strong axioms of infinity, Laver sequences can be constructed for virtually any globally defined large cardinal not weaker than a strong cardinal; indeed, under strong hypotheses, Laver sequences can be constructed for virtually any regular class of embeddings. We show here that if there is a regular class of embeddings with critical point κ, and there is an inaccessible above κ, then it is consistent for (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Ideal projections and forcing projections.Sean Cox & Martin Zeman - 2014 - Journal of Symbolic Logic 79 (4):1247-1285.
    It is well known that saturation of ideals is closely related to the “antichain-catching” phenomenon from Foreman–Magidor–Shelah [10]. We consider several antichain-catching properties that are weaker than saturation, and prove:If${\cal I}$is a normal ideal on$\omega _2 $which satisfiesstationary antichain catching, then there is an inner model with a Woodin cardinal;For any$n \in \omega $, it is consistent relative to large cardinals that there is a normal ideal${\cal I}$on$\omega _n $which satisfiesprojective antichain catching, yet${\cal I}$is not saturated. This provides a negative (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Guessing models and generalized Laver diamond.Matteo Viale - 2012 - Annals of Pure and Applied Logic 163 (11):1660-1678.
    We analyze the notion of guessing model, a way to assign combinatorial properties to arbitrary regular cardinals. Guessing models can be used, in combination with inaccessibility, to characterize various large cardinal axioms, ranging from supercompactness to rank-to-rank embeddings. The majority of these large cardinal properties can be defined in terms of suitable elementary embeddings j:Vγ→Vλ. One key observation is that such embeddings are uniquely determined by the image structures j[Vγ]≺Vλ. These structures will be the prototypes guessing models. We shall show, (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations