- What is a mechanism? Thinking about mechanisms across the sciences.Phyllis McKay Illari & Jon Williamson - 2012 - European Journal for Philosophy of Science 2 (1):119-135.details
|
|
Terminal notions.Jindřich Zapletal - 1999 - Bulletin of Symbolic Logic 5 (4):470-478.details
|
|
(1 other version)Proper forcing and l(ℝ).Itay Neeman & Jindrich Zapletal - 2001 - Journal of Symbolic Logic 66 (2):801-810.details
|
|
Approachable free subsets and fine structure derived scales.Dominik Adolf & Omer Ben-Neria - 2024 - Annals of Pure and Applied Logic 175 (7):103428.details
|
|
The second-order version of Morley’s theorem on the number of countable models does not require large cardinals.Franklin D. Tall & Jing Zhang - 2024 - Archive for Mathematical Logic 63 (3):483-490.details
|
|
(2 other versions)Squares, scales and stationary reflection.James Cummings, Matthew Foreman & Menachem Magidor - 2001 - Journal of Mathematical Logic 1 (01):35-98.details
|
|
The Eightfold Way.James Cummings, Sy-David Friedman, Menachem Magidor, Assaf Rinot & Dima Sinapova - 2018 - Journal of Symbolic Logic 83 (1):349-371.details
|
|
Terminal notions in set theory.Jindřich Zapletal - 2001 - Annals of Pure and Applied Logic 109 (1-2):89-116.details
|
|
Consistency strength of higher chang’s conjecture, without CH.Sean D. Cox - 2011 - Archive for Mathematical Logic 50 (7-8):759-775.details
|
|
A characterization of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square(\kappa^{+})}$$\end{document} in extender models. [REVIEW]Kyriakos Kypriotakis & Martin Zeman - 2013 - Archive for Mathematical Logic 52 (1-2):67-90.details
|
|
The PCF Conjecture and Large Cardinals.Luís Pereira - 2008 - Journal of Symbolic Logic 73 (2):674 - 688.details
|
|
Club guessing sequences and filters.Tetsuya Ishiu - 2005 - Journal of Symbolic Logic 70 (4):1037-1071.details
|
|
In memoriam: James Earl Baumgartner (1943–2011).J. A. Larson - 2017 - Archive for Mathematical Logic 56 (7):877-909.details
|
|
Canonical structure in the universe of set theory: Part two.James Cummings, Matthew Foreman & Menachem Magidor - 2006 - Annals of Pure and Applied Logic 142 (1):55-75.details
|
|
Some applications of mixed support iterations.John Krueger - 2009 - Annals of Pure and Applied Logic 158 (1-2):40-57.details
|
|
The size of $\tilde{T}$.Paul Larson - 2000 - Archive for Mathematical Logic 39 (7):541-568.details
|
|
PFA and Ideals on $\omega_{2}$ Whose Associated Forcings Are Proper.Sean Cox - 2012 - Notre Dame Journal of Formal Logic 53 (3):397-412.details
|
|
Ideal projections and forcing projections.Sean Cox & Martin Zeman - 2014 - Journal of Symbolic Logic 79 (4):1247-1285.details
|
|
A general Mitchell style iteration.John Krueger - 2008 - Mathematical Logic Quarterly 54 (6):641-651.details
|
|
κ-Stationary Subsets of Pκ+Λ, Infinitary Games, and Distributive Laws in Boolean Algebras.Natasha Dobrinen - 2008 - Journal of Symbolic Logic 73 (1):238 - 260.details
|
|
Absoluteness for the theory of the inner model constructed from finitely many cofinality quantifiers.Ur Ya'ar - 2024 - Annals of Pure and Applied Logic 175 (1):103358.details
|
|
Forcing notions in inner models.David Asperó - 2009 - Archive for Mathematical Logic 48 (7):643-651.details
|
|
Weak saturation properties and side conditions.Monroe Eskew - 2024 - Annals of Pure and Applied Logic 175 (1):103356.details
|
|
An undecidable extension of Morley's theorem on the number of countable models.Christopher J. Eagle, Clovis Hamel, Sandra Müller & Franklin D. Tall - 2023 - Annals of Pure and Applied Logic 174 (9):103317.details
|
|
Some basic thoughts on the cofinalities of Chang structures with an application to forcing.Dominik T. Adolf - 2021 - Mathematical Logic Quarterly 67 (3):354-358.details
|
|
Glimm-Effros for coanalytic equivalence relations.Greg Hjorth - 2009 - Journal of Symbolic Logic 74 (2):402-422.details
|
|
Inner models from extended logics: Part 1.Juliette Kennedy, Menachem Magidor & Jouko Väänänen - 2020 - Journal of Mathematical Logic 21 (2):2150012.details
|
|
(15 other versions)2008 European Summer Meeting of the Association for Symbolic Logic. Logic Colloquium '08.Alex J. Wilkie - 2009 - Bulletin of Symbolic Logic 15 (1):95-139.details
|
|
Mechanistic Theories of Causality Part I.Jon Williamson - 2011 - Philosophy Compass 6 (6):421-432.details
|
|
On the universality of the nonstationary ideal.Sean D. Cox - 2018 - Mathematical Logic Quarterly 64 (1-2):103-117.details
|
|
Chang’s conjecture, generic elementary embeddings and inner models for huge cardinals.Matthew Foreman - 2015 - Bulletin of Symbolic Logic 21 (3):251-269.details
|
|
Generic large cardinals as axioms.Monroe Eskew - 2020 - Review of Symbolic Logic 13 (2):375-387.details
|
|
Two Upper Bounds on Consistency Strength of $negsquare{aleph{omega}}$ and Stationary Set Reflection at Two Successive $aleph_{n}$.Martin Zeman - 2017 - Notre Dame Journal of Formal Logic 58 (3):409-432.details
|
|
Thin equivalence relations and inner models.Philipp Schlicht - 2014 - Annals of Pure and Applied Logic 165 (10):1577-1625.details
|
|
Canonical structure in the universe of set theory: part one.James Cummings, Matthew Foreman & Menachem Magidor - 2004 - Annals of Pure and Applied Logic 129 (1-3):211-243.details
|
|
Happy and mad families in L.Itay Neeman & Zach Norwood - 2018 - Journal of Symbolic Logic 83 (2):572-597.details
|
|
Compactness versus hugeness at successor cardinals.Sean Cox & Monroe Eskew - 2022 - Journal of Mathematical Logic 23 (1).details
|
|
Preserving levels of projective determinacy by tree forcings.Fabiana Castiblanco & Philipp Schlicht - 2021 - Annals of Pure and Applied Logic 172 (4):102918.details
|
|
(1 other version)Proper forcing and remarkable cardinals.Ralf-Dieter Schindler - 2000 - Bulletin of Symbolic Logic 6 (2):176-184.details
|
|
Downward transference of mice and universality of local core models.Andrés Eduardo Caicedo & Martin Zeman - 2017 - Journal of Symbolic Logic 82 (2):385-419.details
|
|