Switch to: Citations

Add references

You must login to add references.
  1. Opaque and Translucent Epistemic Dependence in Collaborative Scientific Practice.Susann Wagenknecht - 2014 - Episteme 11 (4):475-492.
    This paper offers an analytic perspective on epistemic dependence that is grounded in theoretical discussion and field observation at the same time. When in the course of knowledge creation epistemic labor is divided, collaborating scientists come to depend upon one another epistemically. Since instances of epistemic dependence are multifarious in scientific practice, I propose to distinguish between two different forms of epistemic dependence, opaque and translucent epistemic dependence. A scientist is opaquely dependent upon a colleague if she does not possess (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • The perceptron: A probabilistic model for information storage and organization in the brain.F. Rosenblatt - 1958 - Psychological Review 65 (6):386-408.
    If we are eventually to understand the capability of higher organisms for perceptual recognition, generalization, recall, and thinking, we must first have answers to three fundamental questions: 1. How is information about the physical world sensed, or detected, by the biological system? 2. In what form is information stored, or remembered? 3. How does information contained in storage, or in memory, influence recognition and behavior? The first of these questions is in the.
    Download  
     
    Export citation  
     
    Bookmark   170 citations  
  • Thinking about mechanisms.Peter Machamer, Lindley Darden & Carl F. Craver - 2000 - Philosophy of Science 67 (1):1-25.
    The concept of mechanism is analyzed in terms of entities and activities, organized such that they are productive of regular changes. Examples show how mechanisms work in neurobiology and molecular biology. Thinking in terms of mechanisms provides a new framework for addressing many traditional philosophical issues: causality, laws, explanation, reduction, and scientific change.
    Download  
     
    Export citation  
     
    Bookmark   1327 citations  
  • Surprised by a Nanowire: Simulation, Control, and Understanding.Johannes Lenhard - 2006 - Philosophy of Science 73 (5):605-616.
    This paper starts by looking at the coincidence of surprising behavior on the nanolevel in both matter and simulation. It uses this coincidence to argue that the simulation approach opens up a pragmatic mode of understanding oriented toward design rules and based on a new instrumental access to complex models. Calculations, and their variation by means of explorative numerical experimentation and visualization, can give a feeling for a model's behavior and the ability to control phenomena, even if the model itself (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Holism, entrenchment, and the future of climate model pluralism.Johannes Lenhard & Eric Winsberg - 2010 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 41 (3):253-262.
    In this paper, we explore the extent to which issues of simulation model validation take on novel characteristics when the models in question become particularly complex. Our central claim is that complex simulation models in general, and global models of climate in particular, face a form of confirmation holism. This holism, moreover, makes analytic understanding of complex models of climate either extremely difficult or even impossible. We argue that this supports a position we call convergence skepticism: the belief that the (...)
    Download  
     
    Export citation  
     
    Bookmark   67 citations  
  • The philosophical novelty of computer simulation methods.Paul Humphreys - 2009 - Synthese 169 (3):615 - 626.
    Reasons are given to justify the claim that computer simulations and computational science constitute a distinctively new set of scientific methods and that these methods introduce new issues in the philosophy of science. These issues are both epistemological and methodological in kind.
    Download  
     
    Export citation  
     
    Bookmark   128 citations  
  • Rethinking mechanistic explanation.Stuart Glennan - 2002 - Proceedings of the Philosophy of Science Association 2002 (3):S342-353.
    Philosophers of science typically associate the causal-mechanical view of scientific explanation with the work of Railton and Salmon. In this paper I shall argue that the defects of this view arise from an inadequate analysis of the concept of mechanism. I contrast Salmon's account of mechanisms in terms of the causal nexus with my own account of mechanisms, in which mechanisms are viewed as complex systems. After describing these two concepts of mechanism, I show how the complex-systems approach avoids certain (...)
    Download  
     
    Export citation  
     
    Bookmark   394 citations  
  • Rethinking Mechanistic Explanation.Stuart Glennan - 2002 - Philosophy of Science 69 (S3):S342-S353.
    Philosophers of science typically associate the causal-mechanical view of scientific explanation with the work of Railton and Salmon. In this paper I shall argue that the defects of this view arise from an inadequate analysis of the concept of mechanism. I contrast Salmon's account of mechanisms in terms of the causal nexus with my own account of mechanisms, in which mechanisms are viewed as complex systems. After describing these two concepts of mechanism, I show how the complex-systems approach avoids certain (...)
    Download  
     
    Export citation  
     
    Bookmark   407 citations  
  • Data Shadows: Knowledge, Openness, and Absence.Gail Davies, Brian Rappert & Sabina Leonelli - 2017 - Science, Technology, and Human Values 42 (2):191-202.
    This editorial critically engages with the understanding of openness by attending to how notions of presence and absence come bundled together as part of efforts to make open. This is particularly evident in contemporary discourse around data production, dissemination, and use. We highlight how the preoccupations with making data present can be usefully analyzed and understood by tracing the related concerns around what is missing, unavailable, or invisible, which unvaryingly but often implicitly accompany debates about data and openness.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Rethinking Mechanistic Explanation.Lindley Darden - 2002 - Philosophy of Science 69 (S3):342-353.
    Philosophers of science typically associate the causal‐mechanical view of scientific explanation with the work of Railton and Salmon. In this paper I shall argue that the defects of this view arise from an inadequate analysis of the concept of mechanism. I contrast Salmon’s account of mechanisms in terms of the causal nexus with my own account of mechanisms, in which mechanisms are viewed as complex systems. After describing these two concepts of mechanism, I show how the complex‐systems approach avoids certain (...)
    Download  
     
    Export citation  
     
    Bookmark   207 citations  
  • How the machine ‘thinks’: Understanding opacity in machine learning algorithms.Jenna Burrell - 2016 - Big Data and Society 3 (1):205395171562251.
    This article considers the issue of opacity as a problem for socially consequential mechanisms of classification and ranking, such as spam filters, credit card fraud detection, search engines, news trends, market segmentation and advertising, insurance or loan qualification, and credit scoring. These mechanisms of classification all frequently rely on computational algorithms, and in many cases on machine learning algorithms to do this work. In this article, I draw a distinction between three forms of opacity: opacity as intentional corporate or state (...)
    Download  
     
    Export citation  
     
    Bookmark   182 citations  
  • Deep learning: A philosophical introduction.Cameron Buckner - 2019 - Philosophy Compass 14 (10):e12625.
    Deep learning is currently the most prominent and widely successful method in artificial intelligence. Despite having played an active role in earlier artificial intelligence and neural network research, philosophers have been largely silent on this technology so far. This is remarkable, given that deep learning neural networks have blown past predicted upper limits on artificial intelligence performance—recognizing complex objects in natural photographs and defeating world champions in strategy games as complex as Go and chess—yet there remains no universally accepted explanation (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations