- Protecting rainforest realism: James Ladyman, Don Ross: Everything must go: metaphysics naturalized, Oxford: Oxford University Press, 2007, pp. 368 £49.00 HB.P. Kyle Stanford, Paul Humphreys, Katherine Hawley, James Ladyman & Don Ross - 2010 - Metascience 19 (2):161-185.details
|
|
On the epistemological analysis of modeling and computational error in the mathematical sciences.Nicolas Fillion & Robert M. Corless - 2014 - Synthese 191 (7):1451-1467.details
|
|
How can computer simulations produce new knowledge?Claus Beisbart - 2012 - European Journal for Philosophy of Science 2 (3):395-434.details
|
|
Why It Is Time To Move Beyond Nagelian Reduction.Marie I. Kaiser - 2012 - In D. Dieks, S. Hartmann, T. Uebel & M. Weber (eds.), Probabilities, Laws and Structure. Springer. pp. 255-272.details
|
|
Agnostic Science. Towards a Philosophy of Data Analysis.D. C. Struppa - 2011 - Foundations of Science 16 (1):1-20.details
|
|
(1 other version)Justifying Our Credences in the Trustworthiness of AI Systems: A Reliabilistic Approach.Andrea Ferrario - 2024 - Science and Engineering Ethics 30 (6):1-21.details
|
|
Explaining AI through mechanistic interpretability.Lena Kästner & Barnaby Crook - 2024 - European Journal for Philosophy of Science 14 (4):1-25.details
|
|
Understanding with Toy Surrogate Models in Machine Learning.Andrés Páez - 2024 - Minds and Machines 34 (4):45.details
|
|
Apriori Knowledge in an Era of Computational Opacity: The Role of AI in Mathematical Discovery.Eamon Duede & Kevin Davey - forthcoming - Philosophy of Science.details
|
|
Imagine This: Opaque DLMs are Reliable in the Context of Justification.Logan Carter - manuscriptdetails
|
|
Experimental high-energy physics without computer simulations.Michael Krämer, Gregor Schiemann & Christian Zeitnitz - 2024 - Studies in History and Philosophy of Science Part A 106 (C):37-42.details
|
|
On the Opacity of Deep Neural Networks.Anders Søgaard - 2023 - Canadian Journal of Philosophy:1-16.details
|
|
The Cost of Prediction.Johannes Lenhard, Simon Stephan & Hans Hasse - manuscriptdetails
|
|
Theorem proving in artificial neural networks: new frontiers in mathematical AI.Markus Pantsar - 2024 - European Journal for Philosophy of Science 14 (1):1-22.details
|
|
AI-driven decision support systems and epistemic reliance: a qualitative study on obstetricians’ and midwives’ perspectives on integrating AI-driven CTG into clinical decision making.Rachel Dlugatch, Antoniya Georgieva & Angeliki Kerasidou - 2024 - BMC Medical Ethics 25 (1):1-11.details
|
|
Interdisciplinarity in the Making: Models and Methods in Frontier Science.Nancy J. Nersessian - 2022 - Cambridge, MA: MIT.details
|
|
We Have No Satisfactory Social Epistemology of AI-Based Science.Inkeri Koskinen - 2024 - Social Epistemology 38 (4):458-475.details
|
|
Linguistic Competence and New Empiricism in Philosophy and Science.Vanja Subotić - 2023 - Dissertation, University of Belgradedetails
|
|
Resource Rationality.Thomas F. Icard - manuscriptdetails
|
|
Expert judgment in climate science: How it is used and how it can be justified.Mason Majszak & Julie Jebeile - 2023 - Studies in History and Philosophy of Science 100 (C):32-38.details
|
|
Connecting ethics and epistemology of AI.Federica Russo, Eric Schliesser & Jean Wagemans - forthcoming - AI and Society:1-19.details
|
|
Uncertainty, Evidence, and the Integration of Machine Learning into Medical Practice.Thomas Grote & Philipp Berens - 2023 - Journal of Medicine and Philosophy 48 (1):84-97.details
|
|
Instruments, agents, and artificial intelligence: novel epistemic categories of reliability.Eamon Duede - 2022 - Synthese 200 (6):1-20.details
|
|
Models, Algorithms, and the Subjects of Transparency.Hajo Greif - 2022 - In Vincent C. Müller (ed.), Philosophy and Theory of Artificial Intelligence 2021. Berlin: Springer. pp. 27-37.details
|
|
Are machines radically contextualist?Ryan M. Nefdt - 2023 - Mind and Language 38 (3):750-771.details
|
|
Computational modeling in philosophy: introduction to a topical collection.Simon Scheller, Christoph Merdes & Stephan Hartmann - 2022 - Synthese 200 (2):1-10.details
|
|
Epistemic injustice and data science technologies.John Symons & Ramón Alvarado - 2022 - Synthese 200 (2):1-26.details
|
|
Scientific Exploration and Explainable Artificial Intelligence.Carlos Zednik & Hannes Boelsen - 2022 - Minds and Machines 32 (1):219-239.details
|
|
Values and inductive risk in machine learning modelling: the case of binary classification models.Koray Karaca - 2021 - European Journal for Philosophy of Science 11 (4):1-27.details
|
|
The Automated Laplacean Demon: How ML Challenges Our Views on Prediction and Explanation.Sanja Srećković, Andrea Berber & Nenad Filipović - 2021 - Minds and Machines 32 (1):159-183.details
|
|
Transparency and the Black Box Problem: Why We Do Not Trust AI.Warren J. von Eschenbach - 2021 - Philosophy and Technology 34 (4):1607-1622.details
|
|
Explaining Epistemic Opacity.Ramón Alvarado - unknowndetails
|
|
Computer Simulations as Scientific Instruments.Ramón Alvarado - 2022 - Foundations of Science 27 (3):1183-1205.details
|
|
Choosing the right model for policy decision-making: the case of smallpox epidemiology.Till Grüne-Yanoff - 2018 - Synthese 198 (Suppl 10):2463-2484.details
|
|
Who is afraid of black box algorithms? On the epistemological and ethical basis of trust in medical AI.Juan Manuel Durán & Karin Rolanda Jongsma - 2021 - Journal of Medical Ethics 47 (5):medethics - 2020-106820.details
|
|
The computational philosophy: simulation as a core philosophical method.Conor Mayo-Wilson & Kevin J. S. Zollman - 2021 - Synthese 199 (1-2):3647-3673.details
|
|
Models, Fictions and Artifacts.Tarja Knuuttila - 2021 - In Wenceslao J. Gonzalez (ed.), Language and Scientific Research. Springer Verlag. pp. 199-22.details
|
|
Models, Parameterization, and Software: Epistemic Opacity in Computational Chemistry.Frédéric Wieber & Alexandre Hocquet - 2020 - Perspectives on Science 28 (5):610-629.details
|
|
Strengthening Weak Emergence.Nora Berenstain - 2020 - Erkenntnis 87 (5):2457-2474.details
|
|
Understanding climate phenomena with data-driven models.Benedikt Knüsel & Christoph Baumberger - 2020 - Studies in History and Philosophy of Science Part A 84 (C):46-56.details
|
|
(1 other version)Degrees of Epistemic Opacity.Iñaki San Pedro - manuscriptdetails
|
|
Limits of trust in medical AI.Joshua James Hatherley - 2020 - Journal of Medical Ethics 46 (7):478-481.details
|
|
What is a Simulation Model?Juan M. Durán - 2020 - Minds and Machines 30 (3):301-323.details
|
|
Transparency in Complex Computational Systems.Kathleen A. Creel - 2020 - Philosophy of Science 87 (4):568-589.details
|
|
A Formal Framework for Computer Simulations: Surveying the Historical Record and Finding Their Philosophical Roots.Juan M. Durán - 2019 - Philosophy and Technology 34 (1):105-127.details
|
|
Mesoscopic modeling as a cognitive strategy for handling complex biological systems.Miles MacLeod & Nancy J. Nersessian - 2019 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 78:101201.details
|
|
Understanding from Machine Learning Models.Emily Sullivan - 2022 - British Journal for the Philosophy of Science 73 (1):109-133.details
|
|
Simulation, Epistemic Opacity, and ‘Envirotechnical Ignorance’ in Nuclear Crisis.Tudor B. Ionescu - 2019 - Minds and Machines 29 (1):61-86.details
|
|
From Models to Simulations.Franck Varenne - 2018 - London, UK: Routledge.details
|
|
Imagination extended and embedded: artifactual versus fictional accounts of models.Tarja Knuuttila - 2017 - Synthese 198 (Suppl 21):5077-5097.details
|
|