Switch to: References

Add citations

You must login to add citations.
  1. Protecting rainforest realism: James Ladyman, Don Ross: Everything must go: metaphysics naturalized, Oxford: Oxford University Press, 2007, pp. 368 £49.00 HB.P. Kyle Stanford, Paul Humphreys, Katherine Hawley, James Ladyman & Don Ross - 2010 - Metascience 19 (2):161-185.
    Reply in Book Symposium on James Ladyman, Don Ross: 'Everything must go: metaphysics naturalized', Oxford: Oxford University Press, 2007.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On the epistemological analysis of modeling and computational error in the mathematical sciences.Nicolas Fillion & Robert M. Corless - 2014 - Synthese 191 (7):1451-1467.
    Interest in the computational aspects of modeling has been steadily growing in philosophy of science. This paper aims to advance the discussion by articulating the way in which modeling and computational errors are related and by explaining the significance of error management strategies for the rational reconstruction of scientific practice. To this end, we first characterize the role and nature of modeling error in relation to a recipe for model construction known as Euler’s recipe. We then describe a general model (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • How can computer simulations produce new knowledge?Claus Beisbart - 2012 - European Journal for Philosophy of Science 2 (3):395-434.
    It is often claimed that scientists can obtain new knowledge about nature by running computer simulations. How is this possible? I answer this question by arguing that computer simulations are arguments. This view parallels Norton’s argument view about thought experiments. I show that computer simulations can be reconstructed as arguments that fully capture the epistemic power of the simulations. Assuming the extended mind hypothesis, I furthermore argue that running the computer simulation is to execute the reconstructing argument. I discuss some (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Why It Is Time To Move Beyond Nagelian Reduction.Marie I. Kaiser - 2012 - In D. Dieks, S. Hartmann, T. Uebel & M. Weber (eds.), Probabilities, Laws and Structure. Springer. pp. 255-272.
    In this paper I argue that it is finally time to move beyond the Nagelian framework and to break new ground in thinking about epistemic reduction in biology. I will do so, not by simply repeating all the old objections that have been raised against Ernest Nagel’s classical model of theory reduction. Rather, I grant that a proponent of Nagel’s approach can handle several of these problems but that, nevertheless, Nagel’s general way of thinking about epistemic reduction in terms of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Agnostic Science. Towards a Philosophy of Data Analysis.D. C. Struppa - 2011 - Foundations of Science 16 (1):1-20.
    In this paper we will offer a few examples to illustrate the orientation of contemporary research in data analysis and we will investigate the corresponding role of mathematics. We argue that the modus operandi of data analysis is implicitly based on the belief that if we have collected enough and sufficiently diverse data, we will be able to answer most relevant questions concerning the phenomenon itself. This is a methodological paradigm strongly related, but not limited to, biology, and we label (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Justifying Our Credences in the Trustworthiness of AI Systems: A Reliabilistic Approach.Andrea Ferrario - 2024 - Science and Engineering Ethics 30 (6):1-21.
    We address an open problem in the philosophy of artificial intelligence (AI): how to justify the epistemic attitudes we have towards the trustworthiness of AI systems. The problem is important, as providing reasons to believe that AI systems are worthy of trust is key to appropriately rely on these systems in human-AI interactions. In our approach, we consider the trustworthiness of an AI as a time-relative, composite property of the system with two distinct facets. One is the actual trustworthiness of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Explaining AI through mechanistic interpretability.Lena Kästner & Barnaby Crook - 2024 - European Journal for Philosophy of Science 14 (4):1-25.
    Recent work in explainable artificial intelligence (XAI) attempts to render opaque AI systems understandable through a divide-and-conquer strategy. However, this fails to illuminate how trained AI systems work as a whole. Precisely this kind of functional understanding is needed, though, to satisfy important societal desiderata such as safety. To remedy this situation, we argue, AI researchers should seek mechanistic interpretability, viz. apply coordinated discovery strategies familiar from the life sciences to uncover the functional organisation of complex AI systems. Additionally, theorists (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Understanding with Toy Surrogate Models in Machine Learning.Andrés Páez - 2024 - Minds and Machines 34 (4):45.
    In the natural and social sciences, it is common to use toy models—extremely simple and highly idealized representations—to understand complex phenomena. Some of the simple surrogate models used to understand opaque machine learning (ML) models, such as rule lists and sparse decision trees, bear some resemblance to scientific toy models. They allow non-experts to understand how an opaque ML model works globally via a much simpler model that highlights the most relevant features of the input space and their effect on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Apriori Knowledge in an Era of Computational Opacity: The Role of AI in Mathematical Discovery.Eamon Duede & Kevin Davey - forthcoming - Philosophy of Science.
    Can we acquire apriori knowledge of mathematical facts from the outputs of computer programs? People like Burge have argued (correctly in our opinion) that, for example, Appel and Haken acquired apriori knowledge of the Four Color Theorem from their computer program insofar as their program simply automated human forms of mathematical reasoning. However, unlike such programs, we argue that the opacity of modern LLMs and DNNs creates obstacles in obtaining apriori mathematical knowledge from them in similar ways. We claim though (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Imagine This: Opaque DLMs are Reliable in the Context of Justification.Logan Carter - manuscript
    Artificial intelligence (AI) and machine learning (ML) models have undoubtedly become useful tools in science. In general, scientists and ML developers are optimistic – perhaps rightfully so – about the potential that these models have in facilitating scientific progress. The philosophy of AI literature carries a different mood. The attention of philosophers remains on potential epistemological issues that stem from the so-called “black box” features of ML models. For instance, Eamon Duede (2023) argues that opacity in deep learning models (DLMs) (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Experimental high-energy physics without computer simulations.Michael Krämer, Gregor Schiemann & Christian Zeitnitz - 2024 - Studies in History and Philosophy of Science Part A 106 (C):37-42.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Opacity of Deep Neural Networks.Anders Søgaard - 2023 - Canadian Journal of Philosophy:1-16.
    Deep neural networks are said to be opaque, impeding the development of safe and trustworthy artificial intelligence, but where this opacity stems from is less clear. What are the sufficient properties for neural network opacity? Here, I discuss five common properties of deep neural networks and two different kinds of opacity. Which of these properties are sufficient for what type of opacity? I show how each kind of opacity stems from only one of these five properties, and then discuss to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Cost of Prediction.Johannes Lenhard, Simon Stephan & Hans Hasse - manuscript
    This paper examines a looming reproducibility crisis in the core of the hard sciences. Namely, it concentrates on molecular modeling and simulation (MMS), a family of methods that predict properties of substances through computing interactions on a molecular level and that is widely popular in physics, chemistry, materials science, and engineering. The paper argues that in order to make quantitative predictions, sophisticated models are needed which have to be evaluated with complex simulation procedures that amalgamate theoretical, technological, and social factors (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Theorem proving in artificial neural networks: new frontiers in mathematical AI.Markus Pantsar - 2024 - European Journal for Philosophy of Science 14 (1):1-22.
    Computer assisted theorem proving is an increasingly important part of mathematical methodology, as well as a long-standing topic in artificial intelligence (AI) research. However, the current generation of theorem proving software have limited functioning in terms of providing new proofs. Importantly, they are not able to discriminate interesting theorems and proofs from trivial ones. In order for computers to develop further in theorem proving, there would need to be a radical change in how the software functions. Recently, machine learning results (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • AI-driven decision support systems and epistemic reliance: a qualitative study on obstetricians’ and midwives’ perspectives on integrating AI-driven CTG into clinical decision making.Rachel Dlugatch, Antoniya Georgieva & Angeliki Kerasidou - 2024 - BMC Medical Ethics 25 (1):1-11.
    Background Given that AI-driven decision support systems (AI-DSS) are intended to assist in medical decision making, it is essential that clinicians are willing to incorporate AI-DSS into their practice. This study takes as a case study the use of AI-driven cardiotography (CTG), a type of AI-DSS, in the context of intrapartum care. Focusing on the perspectives of obstetricians and midwives regarding the ethical and trust-related issues of incorporating AI-driven tools in their practice, this paper explores the conditions that AI-driven CTG (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Interdisciplinarity in the Making: Models and Methods in Frontier Science.Nancy J. Nersessian - 2022 - Cambridge, MA: MIT.
    A cognitive ethnography of how bioengineering scientists create innovative modeling methods. In this first full-scale, long-term cognitive ethnography by a philosopher of science, Nancy J. Nersessian offers an account of how scientists at the interdisciplinary frontiers of bioengineering create novel problem-solving methods. Bioengineering scientists model complex dynamical biological systems using concepts, methods, materials, and other resources drawn primarily from engineering. They aim to understand these systems sufficiently to control or intervene in them. What Nersessian examines here is how cutting-edge bioengineering (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • We Have No Satisfactory Social Epistemology of AI-Based Science.Inkeri Koskinen - 2024 - Social Epistemology 38 (4):458-475.
    In the social epistemology of scientific knowledge, it is largely accepted that relationships of trust, not just reliance, are necessary in contemporary collaborative science characterised by relationships of opaque epistemic dependence. Such relationships of trust are taken to be possible only between agents who can be held accountable for their actions. But today, knowledge production in many fields makes use of AI applications that are epistemically opaque in an essential manner. This creates a problem for the social epistemology of scientific (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Linguistic Competence and New Empiricism in Philosophy and Science.Vanja Subotić - 2023 - Dissertation, University of Belgrade
    The topic of this dissertation is the nature of linguistic competence, the capacity to understand and produce sentences of natural language. I defend the empiricist account of linguistic competence embedded in the connectionist cognitive science. This strand of cognitive science has been opposed to the traditional symbolic cognitive science, coupled with transformational-generative grammar, which was committed to nativism due to the view that human cognition, including language capacity, should be construed in terms of symbolic representations and hardwired rules. Similarly, linguistic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Resource Rationality.Thomas F. Icard - manuscript
    Theories of rational decision making often abstract away from computational and other resource limitations faced by real agents. An alternative approach known as resource rationality puts such matters front and center, grounding choice and decision in the rational use of finite resources. Anticipated by earlier work in economics and in computer science, this approach has recently seen rapid development and application in the cognitive sciences. Here, the theory of rationality plays a dual role, both as a framework for normative assessment (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Expert judgment in climate science: How it is used and how it can be justified.Mason Majszak & Julie Jebeile - 2023 - Studies in History and Philosophy of Science 100 (C):32-38.
    Like any science marked by high uncertainty, climate science is characterized by a widespread use of expert judgment. In this paper, we first show that, in climate science, expert judgment is used to overcome uncertainty, thus playing a crucial role in the domain and even at times supplanting models. One is left to wonder to what extent it is legitimate to assign expert judgment such a status as an epistemic superiority in the climate context, especially as the production of expert (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Connecting ethics and epistemology of AI.Federica Russo, Eric Schliesser & Jean Wagemans - forthcoming - AI and Society:1-19.
    The need for fair and just AI is often related to the possibility of understanding AI itself, in other words, of turning an opaque box into a glass box, as inspectable as possible. Transparency and explainability, however, pertain to the technical domain and to philosophy of science, thus leaving the ethics and epistemology of AI largely disconnected. To remedy this, we propose an integrated approach premised on the idea that a glass-box epistemology should explicitly consider how to incorporate values and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Uncertainty, Evidence, and the Integration of Machine Learning into Medical Practice.Thomas Grote & Philipp Berens - 2023 - Journal of Medicine and Philosophy 48 (1):84-97.
    In light of recent advances in machine learning for medical applications, the automation of medical diagnostics is imminent. That said, before machine learning algorithms find their way into clinical practice, various problems at the epistemic level need to be overcome. In this paper, we discuss different sources of uncertainty arising for clinicians trying to evaluate the trustworthiness of algorithmic evidence when making diagnostic judgments. Thereby, we examine many of the limitations of current machine learning algorithms (with deep learning in particular) (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Instruments, agents, and artificial intelligence: novel epistemic categories of reliability.Eamon Duede - 2022 - Synthese 200 (6):1-20.
    Deep learning (DL) has become increasingly central to science, primarily due to its capacity to quickly, efficiently, and accurately predict and classify phenomena of scientific interest. This paper seeks to understand the principles that underwrite scientists’ epistemic entitlement to rely on DL in the first place and argues that these principles are philosophically novel. The question of this paper is not whether scientists can be justified in trusting in the reliability of DL. While today’s artificial intelligence exhibits characteristics common to (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Models, Algorithms, and the Subjects of Transparency.Hajo Greif - 2022 - In Vincent C. Müller (ed.), Philosophy and Theory of Artificial Intelligence 2021. Berlin: Springer. pp. 27-37.
    Concerns over epistemic opacity abound in contemporary debates on Artificial Intelligence (AI). However, it is not always clear to what extent these concerns refer to the same set of problems. We can observe, first, that the terms 'transparency' and 'opacity' are used either in reference to the computational elements of an AI model or to the models to which they pertain. Second, opacity and transparency might either be understood to refer to the properties of AI systems or to the epistemic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Are machines radically contextualist?Ryan M. Nefdt - 2023 - Mind and Language 38 (3):750-771.
    In this article, I describe a novel position on the semantics of artificial intelligence. I present a problem for the current artificial neural networks used in machine learning, specifically with relation to natural language tasks. I then propose that from a metasemantic level, meaning in machines can best be interpreted as radically contextualist. Finally, I consider what this might mean for human‐level semantic competence from a comparative perspective.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Computational modeling in philosophy: introduction to a topical collection.Simon Scheller, Christoph Merdes & Stephan Hartmann - 2022 - Synthese 200 (2):1-10.
    Computational modeling should play a central role in philosophy. In this introduction to our topical collection, we propose a small topology of computational modeling in philosophy in general, and show how the various contributions to our topical collection fit into this overall picture. On this basis, we describe some of the ways in which computational models from other disciplines have found their way into philosophy, and how the principles one found here still underlie current trends in the field. Moreover, we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Epistemic injustice and data science technologies.John Symons & Ramón Alvarado - 2022 - Synthese 200 (2):1-26.
    Technologies that deploy data science methods are liable to result in epistemic harms involving the diminution of individuals with respect to their standing as knowers or their credibility as sources of testimony. Not all harms of this kind are unjust but when they are we ought to try to prevent or correct them. Epistemically unjust harms will typically intersect with other more familiar and well-studied kinds of harm that result from the design, development, and use of data science technologies. However, (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Scientific Exploration and Explainable Artificial Intelligence.Carlos Zednik & Hannes Boelsen - 2022 - Minds and Machines 32 (1):219-239.
    Models developed using machine learning are increasingly prevalent in scientific research. At the same time, these models are notoriously opaque. Explainable AI aims to mitigate the impact of opacity by rendering opaque models transparent. More than being just the solution to a problem, however, Explainable AI can also play an invaluable role in scientific exploration. This paper describes how post-hoc analytic techniques from Explainable AI can be used to refine target phenomena in medical science, to identify starting points for future (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Values and inductive risk in machine learning modelling: the case of binary classification models.Koray Karaca - 2021 - European Journal for Philosophy of Science 11 (4):1-27.
    I examine the construction and evaluation of machine learning binary classification models. These models are increasingly used for societal applications such as classifying patients into two categories according to the presence or absence of a certain disease like cancer and heart disease. I argue that the construction of ML classification models involves an optimisation process aiming at the minimization of the inductive risk associated with the intended uses of these models. I also argue that the construction of these models is (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Automated Laplacean Demon: How ML Challenges Our Views on Prediction and Explanation.Sanja Srećković, Andrea Berber & Nenad Filipović - 2021 - Minds and Machines 32 (1):159-183.
    Certain characteristics make machine learning a powerful tool for processing large amounts of data, and also particularly unsuitable for explanatory purposes. There are worries that its increasing use in science may sideline the explanatory goals of research. We analyze the key characteristics of ML that might have implications for the future directions in scientific research: epistemic opacity and the ‘theory-agnostic’ modeling. These characteristics are further analyzed in a comparison of ML with the traditional statistical methods, in order to demonstrate what (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Transparency and the Black Box Problem: Why We Do Not Trust AI.Warren J. von Eschenbach - 2021 - Philosophy and Technology 34 (4):1607-1622.
    With automation of routine decisions coupled with more intricate and complex information architecture operating this automation, concerns are increasing about the trustworthiness of these systems. These concerns are exacerbated by a class of artificial intelligence that uses deep learning, an algorithmic system of deep neural networks, which on the whole remain opaque or hidden from human comprehension. This situation is commonly referred to as the black box problem in AI. Without understanding how AI reaches its conclusions, it is an open (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Explaining Epistemic Opacity.Ramón Alvarado - unknown
    Conventional accounts of epistemic opacity, particularly those that stem from the definitive work of Paul Humphreys, typically point to limitations on the part of epistemic agents to account for the distinct ways in which systems, such as computational methods and devices, are opaque. They point, for example, to the lack of technical skill on the part of an agent, the failure to meet standards of best practice, or even the nature of an agent as reasons why epistemically relevant elements of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Computer Simulations as Scientific Instruments.Ramón Alvarado - 2022 - Foundations of Science 27 (3):1183-1205.
    Computer simulations have conventionally been understood to be either extensions of formal methods such as mathematical models or as special cases of empirical practices such as experiments. Here, I argue that computer simulations are best understood as instruments. Understanding them as such can better elucidate their actual role as well as their potential epistemic standing in relation to science and other scientific methods, practices and devices.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Choosing the right model for policy decision-making: the case of smallpox epidemiology.Till Grüne-Yanoff - 2018 - Synthese 198 (Suppl 10):2463-2484.
    Policymakers increasingly draw on scientific methods, including simulation modeling, to justify their decisions. For these purposes, scientists and policymakers face an extensive choice of modeling strategies. Discussing the example of smallpox epidemiology, this paper distinguishes three types of strategies: Massive Simulation Models (MSMs), Abstract Simulation Models (ASMs) and Macro Equation Models (MEMs). By analyzing some of the main smallpox epidemic models proposed in the last 20 years, it discusses how to justify strategy choice with reference to the core characteristics of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Who is afraid of black box algorithms? On the epistemological and ethical basis of trust in medical AI.Juan Manuel Durán & Karin Rolanda Jongsma - 2021 - Journal of Medical Ethics 47 (5):medethics - 2020-106820.
    The use of black box algorithms in medicine has raised scholarly concerns due to their opaqueness and lack of trustworthiness. Concerns about potential bias, accountability and responsibility, patient autonomy and compromised trust transpire with black box algorithms. These worries connect epistemic concerns with normative issues. In this paper, we outline that black box algorithms are less problematic for epistemic reasons than many scholars seem to believe. By outlining that more transparency in algorithms is not always necessary, and by explaining that (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • The computational philosophy: simulation as a core philosophical method.Conor Mayo-Wilson & Kevin J. S. Zollman - 2021 - Synthese 199 (1-2):3647-3673.
    Modeling and computer simulations, we claim, should be considered core philosophical methods. More precisely, we will defend two theses. First, philosophers should use simulations for many of the same reasons we currently use thought experiments. In fact, simulations are superior to thought experiments in achieving some philosophical goals. Second, devising and coding computational models instill good philosophical habits of mind. Throughout the paper, we respond to the often implicit objection that computer modeling is “not philosophical.”.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Models, Fictions and Artifacts.Tarja Knuuttila - 2021 - In Wenceslao J. Gonzalez (ed.), Language and Scientific Research. Springer Verlag. pp. 199-22.
    This paper discusses modeling from the artifactual perspective. The artifactual approach conceives models as erotetic devices. They are purpose-built systems of dependencies that are constrained in view of answering a pending scientific question, motivated by theoretical or empirical considerations. In treating models as artifacts, the artifactual approach is able to address the various languages of sciences that are overlooked by the traditional accounts that concentrate on the relationship of representation in an abstract and general manner. In contrast, the artifactual approach (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Models, Parameterization, and Software: Epistemic Opacity in Computational Chemistry.Frédéric Wieber & Alexandre Hocquet - 2020 - Perspectives on Science 28 (5):610-629.
    . Computational chemistry grew in a new era of “desktop modeling,” which coincided with a growing demand for modeling software, especially from the pharmaceutical industry. Parameterization of models in computational chemistry is an arduous enterprise, and we argue that this activity leads, in this specific context, to tensions among scientists regarding the epistemic opacity transparency of parameterized methods and the software implementing them. We relate one flame war from the Computational Chemistry mailing List in order to assess in detail the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Strengthening Weak Emergence.Nora Berenstain - 2020 - Erkenntnis 87 (5):2457-2474.
    Bedau's influential (1997) account analyzes weak emergence in terms of the non-derivability of a system’s macrostates from its microstates except by simulation. I offer an improved version of Bedau’s account of weak emergence in light of insights from information theory. Non-derivability alone does not guarantee that a system’s macrostates are weakly emergent. Rather, it is non-derivability plus the algorithmic compressibility of the system’s macrostates that makes them weakly emergent. I argue that the resulting information-theoretic picture provides a metaphysical account of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Understanding climate phenomena with data-driven models.Benedikt Knüsel & Christoph Baumberger - 2020 - Studies in History and Philosophy of Science Part A 84 (C):46-56.
    In climate science, climate models are one of the main tools for understanding phenomena. Here, we develop a framework to assess the fitness of a climate model for providing understanding. The framework is based on three dimensions: representational accuracy, representational depth, and graspability. We show that this framework does justice to the intuition that classical process-based climate models give understanding of phenomena. While simple climate models are characterized by a larger graspability, state-of-the-art models have a higher representational accuracy and representational (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Degrees of Epistemic Opacity.Iñaki San Pedro - manuscript
    The paper analyses in some depth the distinction by Paul Humphreys between "epistemic opacity" —which I refer to as "weak epistemic opacity" here— and "essential epistemic opacity", and defends the idea that epistemic opacity in general can be made sense as coming in degrees. The idea of degrees of epistemic opacity is then exploited to show, in the context of computer simulations, the tight relation between the concept of epistemic opacity and actual scientific (modelling and simulation) practices. As a consequence, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Limits of trust in medical AI.Joshua James Hatherley - 2020 - Journal of Medical Ethics 46 (7):478-481.
    Artificial intelligence (AI) is expected to revolutionise the practice of medicine. Recent advancements in the field of deep learning have demonstrated success in variety of clinical tasks: detecting diabetic retinopathy from images, predicting hospital readmissions, aiding in the discovery of new drugs, etc. AI’s progress in medicine, however, has led to concerns regarding the potential effects of this technology on relationships of trust in clinical practice. In this paper, I will argue that there is merit to these concerns, since AI (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • What is a Simulation Model?Juan M. Durán - 2020 - Minds and Machines 30 (3):301-323.
    Many philosophical accounts of scientific models fail to distinguish between a simulation model and other forms of models. This failure is unfortunate because there are important differences pertaining to their methodology and epistemology that favor their philosophical understanding. The core claim presented here is that simulation models are rich and complex units of analysis in their own right, that they depart from known forms of scientific models in significant ways, and that a proper understanding of the type of model simulations (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Transparency in Complex Computational Systems.Kathleen A. Creel - 2020 - Philosophy of Science 87 (4):568-589.
    Scientists depend on complex computational systems that are often ineliminably opaque, to the detriment of our ability to give scientific explanations and detect artifacts. Some philosophers have s...
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • A Formal Framework for Computer Simulations: Surveying the Historical Record and Finding Their Philosophical Roots.Juan M. Durán - 2019 - Philosophy and Technology 34 (1):105-127.
    A chronicled approach to the notion of computer simulations shows that there are two predominant interpretations in the specialized literature. According to the first interpretation, computer simulations are techniques for finding the set of solutions to a mathematical model. I call this first interpretation the problem-solving technique viewpoint. In its second interpretation, computer simulations are considered to describe patterns of behavior of a target system. I call this second interpretation the description of patterns of behavior viewpoint of computer simulations. This (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mesoscopic modeling as a cognitive strategy for handling complex biological systems.Miles MacLeod & Nancy J. Nersessian - 2019 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 78:101201.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Understanding from Machine Learning Models.Emily Sullivan - 2022 - British Journal for the Philosophy of Science 73 (1):109-133.
    Simple idealized models seem to provide more understanding than opaque, complex, and hyper-realistic models. However, an increasing number of scientists are going in the opposite direction by utilizing opaque machine learning models to make predictions and draw inferences, suggesting that scientists are opting for models that have less potential for understanding. Are scientists trading understanding for some other epistemic or pragmatic good when they choose a machine learning model? Or are the assumptions behind why minimal models provide understanding misguided? In (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Simulation, Epistemic Opacity, and ‘Envirotechnical Ignorance’ in Nuclear Crisis.Tudor B. Ionescu - 2019 - Minds and Machines 29 (1):61-86.
    The Fukushima nuclear accident from 2011 provided an occasion for the public display of radiation maps generated using decision-support systems for nuclear emergency management. Such systems rely on computer models for simulating the atmospheric dispersion of radioactive materials and estimating potential doses in the event of a radioactive release from a nuclear reactor. In Germany, as in Japan, such systems are part of the national emergency response apparatus and, in case of accidents, they can be used by emergency task forces (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • From Models to Simulations.Franck Varenne - 2018 - London, UK: Routledge.
    This book analyses the impact computerization has had on contemporary science and explains the origins, technical nature and epistemological consequences of the current decisive interplay between technology and science: an intertwining of formalism, computation, data acquisition, data and visualization and how these factors have led to the spread of simulation models since the 1950s. -/- Using historical, comparative and interpretative case studies from a range of disciplines, with a particular emphasis on the case of plant studies, the author shows how (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Imagination extended and embedded: artifactual versus fictional accounts of models.Tarja Knuuttila - 2017 - Synthese 198 (Suppl 21):5077-5097.
    This paper presents an artifactual approach to models that also addresses their fictional features. It discusses first the imaginary accounts of models and fiction that set model descriptions apart from imagined-objects, concentrating on the latter :251–268, 2010; Frigg and Nguyen in The Monist 99:225–242, 2016; Godfrey-Smith in Biol Philos 21:725–740, 2006; Philos Stud 143:101–116, 2009). While the imaginary approaches accommodate surrogative reasoning as an important characteristic of scientific modeling, they simultaneously raise difficult questions concerning how the imagined entities are related (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations