Switch to: Citations

Add references

You must login to add references.
  1. Nature's capacities and their measurement.Nancy Cartwright - 1989 - New York: Oxford University Press.
    Ever since David Hume, empiricists have barred powers and capacities from nature. In this book Cartwright argues that capacities are essential in our scientific world, and, contrary to empiricist orthodoxy, that they can meet sufficiently strict demands for testability. Econometrics is one discipline where probabilities are used to measure causal capacities, and the technology of modern physics provides several examples of testing capacities (such as lasers). Cartwright concludes by applying the lessons of the book about capacities and probabilities to the (...)
    Download  
     
    Export citation  
     
    Bookmark   677 citations  
  • Unified dynamics for microscopic and macroscopic systems.GianCarlo Ghirardi, Alberto Rimini & Tullio Weber - 1986 - Physical Review D 34 (D):470–491.
    Download  
     
    Export citation  
     
    Bookmark   403 citations  
  • Quantum theory and the schism in physics.Karl Raimund Popper - 1992 - New York: Routledge.
    The basic theme of Popper's philosophy--that something can come from nothing--is related to the present situation in physical theory. Popper carries his investigation right to the center of current debate in quantum physics. He proposes an interpretation of physics--and indeed an entire cosmology--which is realist, conjectural, deductivist and objectivist, anti-positivist, and anti-instrumentalist. He stresses understanding, reminding us that our ignorance grows faster than our conjectural knowledge.
    Download  
     
    Export citation  
     
    Bookmark   118 citations  
  • Interpreting the Quantum World.Jeffrey Bub - 1998 - British Journal for the Philosophy of Science 49 (4):637-641.
    Download  
     
    Export citation  
     
    Bookmark   167 citations  
  • The Metaphysics of Powers: Their Grounding and Their Manifestations.Anna Marmodoro (ed.) - 2010 - New York: Routledge.
    This volume is a collection of papers that advance our understanding of the metaphysics of powers — properties such as fragility and electric charge. The metaphysics of powers is a fast developing research field with fundamental questions at the forefront of current research, such as Can there be a world of only powers? What is the manifestation of a power? Are powers and their manifestations related by necessity? What are the prospects for dispositional accounts of causation? The papers focus on (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Philosophy of Science: The Central Issues.Martin Curd & Jan A. Cover (eds.) - 1998 - Norton.
    Contents Preface General Introduction 1 | Science and Pseudoscience Introduction Karl Popper, Science: Conjectures and Refutations Thomas S. Kuhn, Logic of Discovery or Psychology of Research? Imre Lakatos, Science and Pseudoscience Paul R. Thagard, Why Astrology Is a Pseudoscience Michael Ruse, Creation-Science Is Not Science Larry Laudan, Commentary: Science at the Bar---Causes for Concern Commentary 2 | Rationality, Objectivity, and Values in Science Introduction Thomas S. Kuhn, The Nature and Necessity of Scientific Revolutions Thomas S. Kuhn, Objectivity, Value Judgment, and (...)
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • The metaphysical foundations of modern science.E. A. Burtt - 1927 - Revue Philosophique de la France Et de l'Etranger 103:146-146.
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • Quantum mechanics without the projection postulate and its realistic interpretation.D. Dieks - 1989 - Foundations of Physics 19 (11):1397-1423.
    It is widely held that quantum mechanics is the first scientific theory to present scientifically internal, fundamental difficulties for a realistic interpretation (in the philosophical sense). The standard (Copenhagen) interpretation of the quantum theory is often described as the inevitable instrumentalistic response. It is the purpose of the present article to argue that quantum theory doesnot present fundamental new problems to a realistic interpretation. The formalism of quantum theory has the same states—it will be argued—as the formalisms of older physical (...)
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • The Paraconsistent Logic of Quantum Superpositions.Newton C. A. da Costa & Christian de Ronde - 2013 - Foundations of Physics 43 (7):845-858.
    Physical superpositions exist both in classical and in quantum physics. However, what is exactly meant by ‘superposition’ in each case is extremely different. In this paper we discuss some of the multiple interpretations which exist in the literature regarding superpositions in quantum mechanics. We argue that all these interpretations have something in common: they all attempt to avoid ‘contradiction’. We argue in this paper, in favor of the importance of developing a new interpretation of superpositions which takes into account contradiction, (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Quantum chance and non-locality: probability and non-locality in the interpretations of quantum mechanics.William Michael Dickson - 1998 - New York, NY: Cambridge University Press.
    This book examines in detail two of the fundamental questions raised by quantum mechanics. First, is the world indeterministic? Second, are there connections between spatially separated objects? In the first part, the author examines several interpretations, focusing on how each proposes to solve the measurement problem and on how each treats probability. In the second part, the relationship between probability (specifically determinism and indeterminism) and non-locality is examined, and it is argued that there is a non-trivial relationship between probability and (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Niels Bohr’s Generalization of Classical Mechanics.Peter Bokulich - 2005 - Foundations of Physics 35 (3):347-371.
    We clarify Bohr’s interpretation of quantum mechanics by demonstrating the central role played by his thesis that quantum theory is a rational generalization of classical mechanics. This thesis is essential for an adequate understanding of his insistence on the indispensability of classical concepts, his account of how the quantum formalism gets its meaning, and his belief that hidden variable interpretations are impossible.
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Quantum Mechanics, Chance and Modality.Dennis Dieks - 2010 - Philosophica 83 (1):117-137.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Modal‐type orthomodular logic.Graciela Domenech, Hector Freytes & Christian de Ronde - 2009 - Mathematical Logic Quarterly 55 (3):307-319.
    In this paper we enrich the orthomodular structure by adding a modal operator, following a physical motivation. A logical system is developed, obtaining algebraic completeness and completeness with respect to a Kripkestyle semantic founded on Baer*-semigroups as in [22].
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Open or closed? Dirac, Heisenberg, and the relation between classical and quantum mechanics.Alisa Bokulich - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (3):377-396.
    This paper describes a long-standing, though little-known, debate between Paul Dirac and Werner Heisenberg over the nature of scientific methodology, theory change, and intertheoretic relations. Following Heisenberg’s terminology, their disagreements can be summarized as a debate over whether the classical and quantum theories are “open” or “closed.” A close examination of this debate sheds new light on the philosophical views of two of the great founders of quantum theory.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Heisenberg Meets Kuhn: Closed Theories and Paradigms.Alisa Bokulich - 2006 - Philosophy of Science 73 (1):90-107.
    The aim of this paper is to examine in detail the similarities and dissimilarities between Werner Heisenberg’s account of closed theories and Thomas Kuhn’s model of scientific revolutions. My analysis draws on a little‐known discussion that took place between Heisenberg and Kuhn in 1963, in which Heisenberg, having just read Kuhn’s Structure of Scientific Revolutions, compares Kuhn’s views to his own account of closed theories. I conclude that while Heisenberg and Kuhn share a holist conception of theories, a revolutionary model (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Contradiction, Quantum Mechanics, and the Square of Opposition.Jonas R. B. Arenhart & Décio Krause - unknown
    We discuss the idea that superpositions in quantum mechanics may involve contradictions or contradictory properties. A state of superposition such as the one comprised in the famous Schrödinger’s cat, for instance, is sometimes said to attribute contradictory properties to the cat: being dead and alive at the same time. If that were the case, we would be facing a revolution in logic and science, since we would have one of our greatest scientific achievements showing that real contradictions exist.We analyze that (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Reflective Metaphysics: Understanding Quantum Mechanics from a Kantian Standpoint.Michel Bitbol - 2010 - Philosophica 83 (1):53-83.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Quantum mechanics and the interpretation of the orthomodular square of opposition.Christian de Ronde, Hector Freytes & Graciela Domenech - unknown
    In this paper we analyze and discuss the historical and philosophical development of the notion of logical possibility focusing on its specific meaning in classical and quantum mechanics. Taking into account the logical structure of quantum theory we continue our discussion regarding the Aristotelian Square of Opposition in orthomodular structures enriched with a monadic quantifier. Finally, we provide an interpretation of the Orthomodular Square of Opposition exposing the fact that classical possibility and quantum possibility behave formally in radically different manners.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • For and Against Metaphysics in the Modal Interpretation of Quantum Mechancis.Christian de Ronde - 2010 - Philosophica 83 (1):85-117.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Early greek thought and perspectives for the interpretation of quantum mechanics: Preliminaries to an ontological approach.Karin Verelst & Bob Coecke - 1999 - In S. Smets J. P. Van Bendegem G. C. Cornelis (ed.), Metadebates on Science. VUB-Press & Kluwer.
    It will be shown in this article that an ontological approach for some problems related to the interpretation of Quantum Mechanics could emerge from a re-evaluation of the main paradox of early Greek thought: the paradox of Being and non-Being, and the solutions presented to it by Plato and Aristotle. More well known are the derivative paradoxes of Zeno: the paradox of motion and the paradox of the One and the Many. They stem from what was perceived by classical philosophy (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The square of opposition in orthomodular logic.Hector Freytes, Christian de Ronde & Graciela Domenech - unknown
    In Aristotelian logic, categorical propositions are divided in Universal Affirmative, Universal Negative, Particular Affirmative and Particular Negative. Possible relations between two of the mentioned type of propositions are encoded in the square of opposition. The square expresses the essential properties of monadic first order quantification which, in an algebraic approach, may be represented taking into account monadic Boolean algebras. More precisely, quantifiers are considered as modal operators acting on a Boolean algebra and the square of opposition is represented by relations (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations