Switch to: Citations

Add references

You must login to add references.
  1. The Problem of Hidden Variables in Quantum Mechanics.Simon Kochen & E. P. Specker - 1967 - Journal of Mathematics and Mechanics 17:59--87.
    Download  
     
    Export citation  
     
    Bookmark   496 citations  
  • The modal interpretation of quantum mechanics and its generalization to density operators.Pieter E. Vermaas & Dennis Dieks - 1995 - Foundations of Physics 25 (1):145-158.
    We generalize the modal interpretation of quantum mechanics so that it may be applied to composite systems represented by arbitrary density operators. We discuss the interpretation these density operators receive and relate this to the discussion about the interpretation of proper and improper mixtures in the standard interpretation.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Unified dynamics for microscopic and macroscopic systems.GianCarlo Ghirardi, Alberto Rimini & Tullio Weber - 1986 - Physical Review D 34 (D):470–491.
    Download  
     
    Export citation  
     
    Bookmark   401 citations  
  • Development of concepts in the history of quantum theory.Werner Heisenberg - 1973 - In Jagdish Mehra (ed.), The physicist's conception of nature. Boston,: Reidel. pp. 264--275.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • The Many-Worlds Interpretation of Quantum Mechanics.B. DeWitt & N. Graham (eds.) - 1973 - Princeton UP.
    Download  
     
    Export citation  
     
    Bookmark   213 citations  
  • (1 other version)The Theory of the Universal Wavefunction.Hugh Everett - 1973 - In B. DeWitt & N. Graham (eds.), The Many-Worlds Interpretation of Quantum Mechanics. Princeton UP.
    Download  
     
    Export citation  
     
    Bookmark   71 citations  
  • (1 other version)”Relative state’ formulation of quantum mechanics.Hugh Everett - 1957 - Reviews of Modern Physics 29 (3):454--462.
    Download  
     
    Export citation  
     
    Bookmark   300 citations  
  • Quantum Logic Is Alive [Logical And] (It Is True [Logical Or] It Is False).Michael Dickson - 2001 - Philosophy of Science 68 (S1):S274-.
    Is the quantum-logic interpretation dead? Its near total absence from current discussions about the interpretation of quantum theory suggests so. While mathematical work on quantum logic continues largely unabated, interest in the quantum-logic interpretation seems to be almost nil, at least in Anglo-American philosophy of physics. This paper has the immodest purpose of changing that fact. I shall argue that while the quantum-logic interpretation faces challenges, it remains a live option. The usual objections either miss the mark, or admit a (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Quantum Logic Is Alive ∧.Michael Dickson - 2001 - Philosophy of Science 68 (3):274-287.
    Is the quantum-logic interpretation dead? Its near total absence from current discussions about the interpretation of quantum theory suggests so. While mathematical work on quantum logic continues largely unabated, interest in the quantum-logic interpretation seems to be almost nil, at least in Anglo-American philosophy of physics. This paper has the immodest purpose of changing that fact. I shall argue that while the quantum-logic interpretation faces challenges, it remains a live option. The usual objections either miss the mark, or admit a (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Von Neumann’s Concept of Quantum Logic and Quantum Probability.Miklós Rédei - 2001 - Vienna Circle Institute Yearbook 8:153-172.
    The idea of quantum logic first appears explicitly in the short Section 5 of Chapter III. in von Neumann’s 1932 book on the mathematical foundations of quantum mechanics [31]; however, the real birthplace of quantum logic is commonly identified with the 1936 seminal paper co-authored by G. Birkhoff and J. von Neumann [5]. The aim of this review is to recall the main idea of the Birkhoff-von Neumann concept1 of quantum logic as this was put forward in the 1936 paper. (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • (1 other version)Quantum logic is alive ∧ (it is true ∨ it is false).Michael Dickson - 2001 - Proceedings of the Philosophy of Science Association 2001 (3):S274 - S287.
    Is the quantum-logic interpretation dead? Its near total absence from current discussions about the interpretation of quantum theory suggests so. While mathematical work on quantum logic continues largely unabated, interest in the quantum-logic interpretation seems to be almost nil, at least in Anglo-American philosophy of physics. This paper has the immodest purpose of changing that fact. I shall argue that while the quantum-logic interpretation faces challenges, it remains a live option. The usual objections either miss the mark, or admit a (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Modal‐type orthomodular logic.Graciela Domenech, Hector Freytes & Christian de Ronde - 2009 - Mathematical Logic Quarterly 55 (3):307-319.
    In this paper we enrich the orthomodular structure by adding a modal operator, following a physical motivation. A logical system is developed, obtaining algebraic completeness and completeness with respect to a Kripkestyle semantic founded on Baer*-semigroups as in [22].
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Probability in modal interpretations of quantum mechanics.Dennis Dieks - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):292-310.
    Modal interpretations have the ambition to construe quantum mechanics as an objective, man-independent description of physical reality. Their second leading idea is probabilism: quantum mechanics does not completely fix physical reality but yields probabilities. In working out these ideas an important motif is to stay close to the standard formalism of quantum mechanics and to refrain from introducing new structure by hand. In this paper we explain how this programme can be made concrete. In particular, we show that the Born (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Quantum mechanics without the projection postulate and its realistic interpretation.D. Dieks - 1989 - Foundations of Physics 19 (11):1397-1423.
    It is widely held that quantum mechanics is the first scientific theory to present scientifically internal, fundamental difficulties for a realistic interpretation (in the philosophical sense). The standard (Copenhagen) interpretation of the quantum theory is often described as the inevitable instrumentalistic response. It is the purpose of the present article to argue that quantum theory doesnot present fundamental new problems to a realistic interpretation. The formalism of quantum theory has the same states—it will be argued—as the formalisms of older physical (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Quantum Mechanics, Chance and Modality.Dennis Dieks - 2010 - Philosophica 83 (1):117-137.
    Download  
     
    Export citation  
     
    Bookmark   28 citations