Switch to: References

Add citations

You must login to add citations.
  1. Entropy - A Guide for the Perplexed.Roman Frigg & Charlotte Werndl - 2011 - In Claus Beisbart & Stephan Hartmann (eds.), Probabilities in Physics. Oxford, GB: Oxford University Press. pp. 115-142.
    Entropy is ubiquitous in physics, and it plays important roles in numerous other disciplines ranging from logic and statistics to biology and economics. However, a closer look reveals a complicated picture: entropy is defined differently in different contexts, and even within the same domain different notions of entropy are at work. Some of these are defined in terms of probabilities, others are not. The aim of this chapter is to arrive at an understanding of some of the most important notions (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Does Science Influence the Logic we Ought to Use: A Reflection on the Quantum Logic Controversy.Michael Ashcroft - 2010 - Studia Logica 95 (1-2):183 - 206.
    In this article I argue that there is a sense in which logic is empirical, and hence open to influence from science. One of the roles of logic is the modelling and extending of natural language reasoning. It does so by providing a formal system which succeeds in modelling the structure of a paradigmatic set of our natural language inferences and which then permits us to extend this structure to novel cases with relative ease. In choosing the best system of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The philosophy of alternative logics.Andrew Aberdein & Stephen Read - 2009 - In Leila Haaparanta (ed.), The development of modern logic. New York: Oxford University Press. pp. 613-723.
    This chapter focuses on alternative logics. It discusses a hierarchy of logical reform. It presents case studies that illustrate particular aspects of the logical revisionism discussed in the chapter. The first case study is of intuitionistic logic. The second case study turns to quantum logic, a system proposed on empirical grounds as a resolution of the antinomies of quantum mechanics. The third case study is concerned with systems of relevance logic, which have been the subject of an especially detailed reform (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The quantum measurement problem: State of play.David Wallace - 2008 - In Dean Rickles (ed.), The Ashgate Companion to Contemporary Philosophy of Physics. Ashgate.
    This is a preliminary version of an article to appear in the forthcoming Ashgate Companion to the New Philosophy of Physics.In it, I aim to review, in a way accessible to foundationally interested physicists as well as physics-informed philosophers, just where we have got to in the quest for a solution to the measurement problem. I don't advocate any particular approach to the measurement problem (not here, at any rate!) but I do focus on the importance of decoherence theory to (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Non-relativistic quantum mechanics.Michael Dickson - unknown
    This essay is a discussion of the philosophical and foundational issues that arise in non-relativistic quantum theory. After introducing the formalism of the theory, I consider: characterizations of the quantum formalism, empirical content, uncertainty, the measurement problem, and non-locality. In each case, the main point is to give the reader some introductory understanding of some of the major issues and recent ideas.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Is logic empirical?Guido Bacciagaluppi - unknown
    The philosophical debate about quantum logic between the late 1960s and the early 1980s was generated mainly by Putnam's claims that quantum mechanics empirically motivates introducing a new form of logic, that such an empirically founded quantum logic is the `true' logic, and that adopting quantum logic would resolve all the paradoxes of quantum mechanics. Most of that debate focussed on the latter claim, reaching the conclusion that it was mistaken. This chapter will attempt to clarify the possible misunderstandings surrounding (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Rules and Meaning in Quantum Mechanics.Iulian D. Toader - manuscript
    This book concerns the metasemantics of quantum mechanics (QM). Roughly, it pursues an investigation at an intersection of the philosophy of physics and the philosophy of semantics, and it offers a critical analysis of rival explanations of the semantic facts of standard QM. Two problems for such explanations are discussed: categoricity and permanence of rules. New results include 1) a reconstruction of Einstein's incompleteness argument, which concludes that a local, separable, and categorical QM cannot exist, 2) a reinterpretation of Bohr's (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • La interpretación modal de la mecánica cuántica: de la lógica cuántica al problema de la medida.Jose Alejandro Fernández Cuesta - 2023 - Revista de la Sociedad de Lógica, Metodología y Filosofía de la Ciencia En España:14-36.
    El presente trabajo pretende explicitar que los operadores modales, como construcciones lógicas, insertos en las interpretaciones modales (MI) de la mecánica cuántica son usados de manera informal sin una semántica modal adecuada. Primero se estudiarán en detalle los motivos por los que ninguna lógica cuántica puede ofrecer una base apropiada para formalizar estos operadores en contextos mecánico-cuánticos. A continuación, se presentará el enfoque de las historias cuánticas como una nueva lógica cuántica (NQL) intrínsecamente booleana como posible herramienta para formalizar operadores (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An Empirical Route to Logical 'Conventionalism'.Eugene Chua - 2017 - In Baltag Alexandru, Seligman Jeremy & Yamada Tomoyuki (eds.), Logic, Rationality, and Interaction. LORI 2017. Lecture Notes in Computer Science, vol 10455. Springer. pp. 631-636.
    The laws of classical logic are taken to be logical truths, which in turn are taken to hold objectively. However, we might question our faith in these truths: why are they true? One general approach, proposed by Putnam [8] and more recently Dickson [3] or Maddy [5], is to adopt empiricism about logic. On this view, logical truths are true because they are true of the world alone – this gives logical truths an air of objectivity. Putnam and Dickson both (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Interpreting the Modal Kochen–Specker theorem: Possibility and many worlds in quantum mechanics.Christian de Ronde, Hector Freytes & Graciela Domenech - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 45:11-18.
    In this paper we attempt to physically interpret the Modal Kochen–Specker theorem. In order to do so, we analyze the features of the possible properties of quantum systems arising from the elements in an orthomodular lattice and distinguish the use of “possibility” in the classical and quantum formalisms. Taking into account the modal and many worlds non-collapse interpretation of the projection postulate, we discuss how the MKS theorem rules the constraints to actualization, and thus, the relation between actual and possible (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations