Switch to: Citations

Add references

You must login to add references.
  1. The Problem of Hidden Variables in Quantum Mechanics.Simon Kochen & E. P. Specker - 1967 - Journal of Mathematics and Mechanics 17:59--87.
    Download  
     
    Export citation  
     
    Bookmark   496 citations  
  • Physics and beyond: encounters and conversations.Werner Heisenberg - 1971 - London: G. Allen & Unwin.
    Download  
     
    Export citation  
     
    Bookmark   104 citations  
  • Interpreting the Quantum World.Jeffrey Bub - 1998 - British Journal for the Philosophy of Science 49 (4):637-641.
    Download  
     
    Export citation  
     
    Bookmark   171 citations  
  • Wilfrid Sellars.Willem A. DeVries - 2005 - Mcgill-Queen's University Press.
    Wilfrid Sellars has been called "the most profound and systematic epistemological thinker of the twentieth century". He was in many respects ahead of his time, and many of his innovations have become widely acknowledged, for example, his attack on the "myth of the given", his functionalist treatment of intentional states, his proposal that psychological concepts are like theoretical concepts, and his suggestion that attributions of knowledge locate the knower "in the logical space of reasons". However, while many philosophers have begun (...)
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • Philosophy of Science: The Central Issues.Martin Curd & Jan A. Cover (eds.) - 1998 - Norton.
    Contents Preface General Introduction 1 | Science and Pseudoscience Introduction Karl Popper, Science: Conjectures and Refutations Thomas S. Kuhn, Logic of Discovery or Psychology of Research? Imre Lakatos, Science and Pseudoscience Paul R. Thagard, Why Astrology Is a Pseudoscience Michael Ruse, Creation-Science Is Not Science Larry Laudan, Commentary: Science at the Bar---Causes for Concern Commentary 2 | Rationality, Objectivity, and Values in Science Introduction Thomas S. Kuhn, The Nature and Necessity of Scientific Revolutions Thomas S. Kuhn, Objectivity, Value Judgment, and (...)
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Events and the Ontology of Quantum Mechanics.Mauro Dorato - 2015 - Topoi 34 (2):369-378.
    In the first part of the paper I argue that an ontology of events is precise, flexible and general enough so as to cover the three main alternative formulations of quantum mechanics as well as theories advocating an antirealistic view of the wave function. Since these formulations advocate a primitive ontology of entities living in four-dimensional spacetime, they are good candidates to connect that quantum image with the manifest image of the world. However, to the extent that some form of (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Can we dissolve physical entities into mathematical structures?Tian Yu Cao - 2003 - Synthese 136 (1):57 - 71.
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Quantum Superpositions and the Representation of Physical Reality Beyond Measurement Outcomes and Mathematical Structures.Christian de Ronde - 2016 - Foundations of Science 23 (4):621-648.
    In this paper we intend to discuss the importance of providing a physical representation of quantum superpositions which goes beyond the mere reference to mathematical structures and measurement outcomes. This proposal goes in the opposite direction to the project present in orthodox contemporary philosophy of physics which attempts to “bridge the gap” between the quantum formalism and common sense “classical reality”—precluding, right from the start, the possibility of interpreting quantum superpositions through non-classical notions. We will argue that in order to (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Many worlds: decoherent or incoherent?Karim P. Y. Thébault & Richard Dawid - 2015 - Synthese 192 (5):1559-1580.
    We claim that, as it stands, the Deutsch–Wallace–Everett approach to quantum theory is conceptually incoherent. This charge is based upon the approach’s reliance upon decoherence arguments that conflict with its own fundamental precepts regarding probabilistic reasoning in two respects. This conceptual conflict obtains even if the decoherence arguments deployed are aimed merely towards the establishment of certain ‘emergent’ or ‘robust’ structures within the wave function: To be relevant to physical science notions such as robustness must be empirically grounded, and, on (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Niels Bohr’s Generalization of Classical Mechanics.Peter Bokulich - 2005 - Foundations of Physics 35 (3):347-371.
    We clarify Bohr’s interpretation of quantum mechanics by demonstrating the central role played by his thesis that quantum theory is a rational generalization of classical mechanics. This thesis is essential for an adequate understanding of his insistence on the indispensability of classical concepts, his account of how the quantum formalism gets its meaning, and his belief that hidden variable interpretations are impossible.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • The coherence theory of truth.James O. Young - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Open or closed? Dirac, Heisenberg, and the relation between classical and quantum mechanics.Alisa Bokulich - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (3):377-396.
    This paper describes a long-standing, though little-known, debate between Paul Dirac and Werner Heisenberg over the nature of scientific methodology, theory change, and intertheoretic relations. Following Heisenberg’s terminology, their disagreements can be summarized as a debate over whether the classical and quantum theories are “open” or “closed.” A close examination of this debate sheds new light on the philosophical views of two of the great founders of quantum theory.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Heisenberg Meets Kuhn: Closed Theories and Paradigms.Alisa Bokulich - 2006 - Philosophy of Science 73 (1):90-107.
    The aim of this paper is to examine in detail the similarities and dissimilarities between Werner Heisenberg’s account of closed theories and Thomas Kuhn’s model of scientific revolutions. My analysis draws on a little‐known discussion that took place between Heisenberg and Kuhn in 1963, in which Heisenberg, having just read Kuhn’s Structure of Scientific Revolutions, compares Kuhn’s views to his own account of closed theories. I conclude that while Heisenberg and Kuhn share a holist conception of theories, a revolutionary model (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Development of concepts in the history of quantum theory.Werner Heisenberg - 1973 - In Jagdish Mehra (ed.), The physicist's conception of nature. Boston,: Reidel. pp. 264--275.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • ‘Einselection’ of pointer observables: The new H-theorem?Ruth E. Kastner - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 48 (1):56-58.
    In attempting to derive irreversible macroscopic thermodynamics from reversible microscopic dynamics, Boltzmann inadvertently smuggled in a premise that assumed the very irreversibility he was trying to prove: ‘molecular chaos.’ The program of ‘Einselection’ within Everettian approaches faces a similar ‘Loschmidt’s Paradox’: the universe, according to the Everettian picture, is a closed system obeying only unitary dynamics, and it therefore contains no distinguishable environmental subsystems with the necessary ‘phase randomness’ to effect einselection of a pointer observable. The theoretically unjustified assumption of (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • (1 other version)A metaphysician looks at the Everett interpretation.John Hawthorne - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory, & Reality. Oxford, GB: Oxford University Press UK.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Was Einstein Really a Realist?Don Howard - 1993 - Perspectives on Science 1 (2):204-251.
    It is widely believed that the development of the general theory of relativity coincided with a shift in Einstein’s philosophy of science from a kind of Machian positivism to a form of scientific realism. This article criticizes that view, arguing that a kind of realism was present from the start but that Einstein was skeptical all along about some of the bolder metaphysical and epistemological claims made on behalf of what we now would call scientific realism. If we read Einstein’s (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • (1 other version)A metaphysician looks at the Everett interpretation.John Hawthorne - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory, & Reality. Oxford, GB: Oxford University Press UK.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Hilbert Space Quantum Mechanics is Contextual.Christian de Ronde - unknown
    In a recent paper Griffiths [38] has argued, based on the consistent histories interpretation, that Hilbert space quantum mechanics is noncontextual. According to Griffiths the problem of contextuality disappears if the apparatus is “designed and operated by a competent experimentalist” and we accept the Single Framework Rule. We will argue from a representational realist stance that the conclusion is incorrect due to the misleading understanding provided by Griffiths to the meaning of quantum contextuality and its relation to physical reality and (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Early greek thought and perspectives for the interpretation of quantum mechanics: Preliminaries to an ontological approach.Karin Verelst & Bob Coecke - 1999 - In S. Smets J. P. Van Bendegem G. C. Cornelis (ed.), Metadebates on Science. VUB-Press & Kluwer.
    It will be shown in this article that an ontological approach for some problems related to the interpretation of Quantum Mechanics could emerge from a re-evaluation of the main paradox of early Greek thought: the paradox of Being and non-Being, and the solutions presented to it by Plato and Aristotle. More well known are the derivative paradoxes of Zeno: the paradox of motion and the paradox of the One and the Many. They stem from what was perceived by classical philosophy (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Epistemological and Ontological Paraconsistency in Quantum Mechanics: For and Against Bohrian Philosophy.Christian de Ronde - unknown
    We interpret the philosophy of Niels Bohr as related to the so called ''linguistic turn'' and consider paraconsistency in the light of the Bohrian notion of complementarity. Following [16], Jean-Yves Beziau has discussed the seemingly contradictory perspectives found in the quantum mechanical double slit experiment in terms of paraconsistent view-points [7, 8]. This interpretation goes in line with the well known Bohrian Neo-Kantian epistemological account of quantum mechanics. In the present paper, we put forward the idea that one can also (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quantum particles as conceptual entities: A possible explanatory framework for quantum theory. [REVIEW]Diederik Aerts - 2009 - Foundations of Science 14 (4):361-411.
    We put forward a possible new interpretation and explanatory framework for quantum theory. The basic hypothesis underlying this new framework is that quantum particles are conceptual entities. More concretely, we propose that quantum particles interact with ordinary matter, nuclei, atoms, molecules, macroscopic material entities, measuring apparatuses, in a similar way to how human concepts interact with memory structures, human minds or artificial memories. We analyze the most characteristic aspects of quantum theory, i.e. entanglement and non-locality, interference and superposition, identity and (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations