Switch to: Citations

Add references

You must login to add references.
  1. Algebraizable Logics.W. J. Blok & Don Pigozzi - 2022 - Advanced Reasoning Forum.
    W. J. Blok and Don Pigozzi set out to try to answer the question of what it means for a logic to have algebraic semantics. In this seminal book they transformed the study of algebraic logic by giving a general framework for the study of logics by algebraic means. The Dutch mathematician W. J. Blok (1947-2003) received his doctorate from the University of Amsterdam in 1979 and was Professor of Mathematics at the University of Illinois, Chicago until his death in (...)
    Download  
     
    Export citation  
     
    Bookmark   138 citations  
  • Reasoning About Uncertainty.Joseph Y. Halpern - 2003 - MIT Press.
    Using formal systems to represent and reason about uncertainty.
    Download  
     
    Export citation  
     
    Bookmark   168 citations  
  • (1 other version)Perfect MV-Algebras Are Categorically Equivalent to Abelian l-Groups.Antonio Di Nola & Ada Lettieri - 1994 - Studia Logica 53 (3):417-432.
    In this paper we prove that the category of abelian l-groups is equivalent to the category of perfect MV-algebras. Furthermore, we give a finite equational axiomatization of the variety generated by perfect MV-algebras.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Averaging the truth-value in łukasiewicz logic.Daniele Mundici - 1995 - Studia Logica 55 (1):113 - 127.
    Chang's MV algebras are the algebras of the infinite-valued sentential calculus of ukasiewicz. We introduce finitely additive measures (called states) on MV algebras with the intent of capturing the notion of average degree of truth of a proposition. Since Boolean algebras coincide with idempotent MV algebras, states yield a generalization of finitely additive measures. Since MV algebras stand to Boolean algebras as AFC*-algebras stand to commutative AFC*-algebras, states are naturally related to noncommutativeC*-algebraic measures.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Representation and extension of states on MV-algebras.TomአKroupa - 2006 - Archive for Mathematical Logic 45 (4):381-392.
    MV-algebras stand for the many-valued Łukasiewicz logic the same as Boolean algebras for the classical logic. States on MV-algebras were first mentioned [20] in probability theory and later also introduced in effort to capture a notion of `an average truth-value of proposition' [15] in Łukasiewicz many-valued logic. In the presented paper, an integral representation theorem for finitely-additive states on semisimple MV-algebra will be proven. Further, we shall prove extension theorems concerning states defined on sub-MV-algebras and normal partitions of unity generalizing (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Book Reviews. [REVIEW]P. Hájek - 2002 - Studia Logica 72 (3):433-443.
    Download  
     
    Export citation  
     
    Bookmark   92 citations  
  • Subdirectly irreducible state-morphism BL-algebras.Anatolij Dvurečenskij - 2011 - Archive for Mathematical Logic 50 (1-2):145-160.
    Recently Flaminio and Montagna (Proceedings of the 5th EUSFLAT Conference, II: 201–206. Ostrava, 2007), (Inter. J. Approx. Reason. 50:138–152, 2009) introduced the notion of a state MV-algebra as an MV-algebra with internal state. We have two kinds: state MV-algebras and state-morphism MV-algebras. These notions were also extended for state BL-algebras in (Soft Comput. doi:10.1007/s00500-010-0571-5). In this paper, we completely describe subdirectly irreducible state-morphism BL-algebras and this generalizes an analogous result for state-morphism MV-algebras presented in (Ann. Pure Appl. Logic 161:161–173, 2009).
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Perfect MV-algebras are categorically equivalent to abelianl-groups.Antonio Di Nola & Ada Lettieri - 1994 - Studia Logica 53 (3):417-432.
    In this paper we prove that the category of abelianl-groups is equivalent to the category of perfect MV-algebras. Furthermore, we give a finite equational axiomatization of the variety generated by perfect MV-algebras.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Reasoning about Uncertainty.Joseph Y. Halpern - 2004 - Bulletin of Symbolic Logic 10 (3):427-429.
    Download  
     
    Export citation  
     
    Bookmark   42 citations