Switch to: Citations

References in:

Bicartesian coherence

Studia Logica 71 (3):331 - 353 (2002)

Add references

You must login to add references.
  1. Completeness before Post: Bernays, Hilbert, and the development of propositional logic.Richard Zach - 1999 - Bulletin of Symbolic Logic 5 (3):331-366.
    Some of the most important developments of symbolic logic took place in the 1920s. Foremost among them are the distinction between syntax and semantics and the formulation of questions of completeness and decidability of logical systems. David Hilbert and his students played a very important part in these developments. Their contributions can be traced to unpublished lecture notes and other manuscripts by Hilbert and Bernays dating to the period 1917-1923. The aim of this paper is to describe these results, focussing (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Algebra of proofs.M. E. Szabo - 1978 - New York: sole distributors for the U.S.A. and Canada, Elsevier North-Holland.
    Provability, Computability and Reflection.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • (1 other version)Basic proof theory.A. S. Troelstra - 2000 - New York: Cambridge University Press. Edited by Helmut Schwichtenberg.
    This introduction to the basic ideas of structural proof theory contains a thorough discussion and comparison of various types of formalization of first-order logic. Examples are given of several areas of application, namely: the metamathematics of pure first-order logic (intuitionistic as well as classical); the theory of logic programming; category theory; modal logic; linear logic; first-order arithmetic and second-order logic. In each case the aim is to illustrate the methods in relatively simple situations and then apply them elsewhere in much (...)
    Download  
     
    Export citation  
     
    Bookmark   159 citations  
  • Coherence in cartesian closed categories and the generality of proofs.M. E. Szabo - 1989 - Studia Logica 48 (3):285 - 297.
    We introduce the notion of an alphabetic trace of a cut-free intuitionistic prepositional proof and show that it serves to characterize the equality of arrows in cartesian closed categories. We also show that alphabetic traces improve on the notion of the generality of proofs proposed in the literature. The main theorem of the paper yields a new and considerably simpler solution of the coherence problem for cartesian closed categories than those in [11, 14].
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Maximality of Cartesian Categories.Z. Petric & K. Dosen - 2001 - Mathematical Logic Quarterly 47 (1):137-144.
    It is proved that equations between arrows assumed for cartesian categories are maximal in the sense that extending them with any new equation in the language of free cartesian categories collapses a cartesian category into a preorder. An analogous result holds for categories with binary products, which may lack a terminal object. The proof is based on a coherence result for cartesian categories, which is related to model-theoretic methods of normalization. This maximality of cartesian categories, which is analogous to Post (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A categorical equivalence of proofs.Manfred E. Szabo - 1974 - Notre Dame Journal of Formal Logic 15 (2):177-191.
    Download  
     
    Export citation  
     
    Bookmark   3 citations