Switch to: References

Citations of:

Basic proof theory

New York: Cambridge University Press. Edited by Helmut Schwichtenberg (2000)

Add citations

You must login to add citations.
  1. Shadows of Syntax: Revitalizing Logical and Mathematical Conventionalism.Jared Warren - 2020 - New York, USA: Oxford University Press.
    What is the source of logical and mathematical truth? This book revitalizes conventionalism as an answer to this question. Conventionalism takes logical and mathematical truth to have their source in linguistic conventions. This was an extremely popular view in the early 20th century, but it was never worked out in detail and is now almost universally rejected in mainstream philosophical circles. Shadows of Syntax is the first book-length treatment and defense of a combined conventionalist theory of logic and mathematics. It (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Truth without contra(di)ction.Elia Zardini - 2011 - Review of Symbolic Logic 4 (4):498-535.
    The concept of truth arguably plays a central role in many areas of philosophical theorizing. Yet, what seems to be one of the most fundamental principles governing that concept, i.e. the equivalence between P and , is inconsistent in full classical logic, as shown by the semantic paradoxes. I propose a new solution to those paradoxes, based on a principled revision of classical logic. Technically, the key idea consists in the rejection of the unrestricted validity of the structural principle of (...)
    Download  
     
    Export citation  
     
    Bookmark   99 citations  
  • (1 other version)Proof-Theoretic Semantics.Peter Schroeder-Heister - 2024 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • Conditional Heresies.Fabrizio Cariani & Simon Goldstein - 2018 - Philosophy and Phenomenological Research (2):251-282.
    Philosophy and Phenomenological Research, EarlyView.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • The logic of justification.Sergei Artemov - 2008 - Review of Symbolic Logic 1 (4):477-513.
    We describe a general logical framework, Justification Logic, for reasoning about epistemic justification. Justification Logic is based on classical propositional logic augmented by justification assertions t: F that read t is a justification for F. Justification Logic absorbs basic principles originating from both mainstream epistemology and the mathematical theory of proofs. It contributes to the studies of the well-known Justified True Belief vs. Knowledge problem. We state a general Correspondence Theorem showing that behind each epistemic modal logic, there is a (...)
    Download  
     
    Export citation  
     
    Bookmark   91 citations  
  • Proof Analysis in Modal Logic.Sara Negri - 2005 - Journal of Philosophical Logic 34 (5-6):507-544.
    A general method for generating contraction- and cut-free sequent calculi for a large family of normal modal logics is presented. The method covers all modal logics characterized by Kripke frames determined by universal or geometric properties and it can be extended to treat also Gödel-Löb provability logic. The calculi provide direct decision methods through terminating proof search. Syntactic proofs of modal undefinability results are obtained in the form of conservativity theorems.
    Download  
     
    Export citation  
     
    Bookmark   106 citations  
  • Harmony and autonomy in classical logic.Stephen Read - 2000 - Journal of Philosophical Logic 29 (2):123-154.
    Michael Dummett and Dag Prawitz have argued that a constructivist theory of meaning depends on explicating the meaning of logical constants in terms of the theory of valid inference, imposing a constraint of harmony on acceptable connectives. They argue further that classical logic, in particular, classical negation, breaks these constraints, so that classical negation, if a cogent notion at all, has a meaning going beyond what can be exhibited in its inferential use. I argue that Dummett gives a mistaken elaboration (...)
    Download  
     
    Export citation  
     
    Bookmark   98 citations  
  • Anything Goes.David Ripley - 2015 - Topoi 34 (1):25-36.
    This paper consider Prior's connective Tonk from a particular bilateralist perspective. I show that there is a natural perspective from which we can see Tonk and its ilk as perfectly well-defined pieces of vocabulary; there is no need for restrictions to bar things like Tonk.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Validity Concepts in Proof-theoretic Semantics.Peter Schroeder-Heister - 2006 - Synthese 148 (3):525-571.
    The standard approach to what I call “proof-theoretic semantics”, which is mainly due to Dummett and Prawitz, attempts to give a semantics of proofs by defining what counts as a valid proof. After a discussion of the general aims of proof-theoretic semantics, this paper investigates in detail various notions of proof-theoretic validity and offers certain improvements of the definitions given by Prawitz. Particular emphasis is placed on the relationship between semantic validity concepts and validity concepts used in normalization theory. It (...)
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • On defining the notion of complete and immediate formal grounding.Francesca Poggiolesi - 2016 - Synthese 193 (10).
    The aim of this paper is to provide a definition of the the notion of complete and immediate formal grounding through the concepts of derivability and complexity. It will be shown that this definition yields a subtle and precise analysis of the concept of grounding in several paradigmatic cases.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Truth and Falsehood: An Inquiry Into Generalized Logical Values.Yaroslav Shramko & Heinrich Wansing - 2011 - Dordrecht, Netherland: Springer.
    The book presents a thoroughly elaborated logical theory of generalized truth-values understood as subsets of some established set of truth values. After elucidating the importance of the very notion of a truth value in logic and philosophy, we examine some possible ways of generalizing this notion. The useful four-valued logic of first-degree entailment by Nuel Belnap and the notion of a bilattice constitute the basis for further generalizations. By doing so we elaborate the idea of a multilattice, and most notably, (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • On constructing a logic for the notion of complete and immediate formal grounding.Francesca Poggiolesi - 2018 - Synthese 195 (3):1231-1254.
    In Poggiolesi we have introduced a rigorous definition of the notion of complete and immediate formal grounding; in the present paper our aim is to construct a logic for the notion of complete and immediate formal grounding based on that definition. Our logic will have the form of a calculus of natural deduction, will be proved to be sound and complete and will allow us to have fine-grained grounding principles.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • A formal system for euclid’s elements.Jeremy Avigad, Edward Dean & John Mumma - 2009 - Review of Symbolic Logic 2 (4):700--768.
    We present a formal system, E, which provides a faithful model of the proofs in Euclid's Elements, including the use of diagrammatic reasoning.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Does the deduction theorem fail for modal logic?Raul Hakli & Sara Negri - 2012 - Synthese 187 (3):849-867.
    Various sources in the literature claim that the deduction theorem does not hold for normal modal or epistemic logic, whereas others present versions of the deduction theorem for several normal modal systems. It is shown here that the apparent problem arises from an objectionable notion of derivability from assumptions in an axiomatic system. When a traditional Hilbert-type system of axiomatic logic is generalized into a system for derivations from assumptions, the necessitation rule has to be modified in a way that (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Pluralism in Mathematics: A New Position in Philosophy of Mathematics.Michèle Friend - 2013 - Dordrecht, Netherland: Springer.
    The pluralist sheds the more traditional ideas of truth and ontology. This is dangerous, because it threatens instability of the theory. To lend stability to his philosophy, the pluralist trades truth and ontology for rigour and other ‘fixtures’. Fixtures are the steady goal posts. They are the parts of a theory that stay fixed across a pair of theories, and allow us to make translations and comparisons. They can ultimately be moved, but we tend to keep them fixed temporarily. Apart (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • (1 other version)Deep sequent systems for modal logic.Kai Brünnler - 2009 - Archive for Mathematical Logic 48 (6):551-577.
    We see a systematic set of cut-free axiomatisations for all the basic normal modal logics formed by some combination the axioms d, t, b, 4, 5. They employ a form of deep inference but otherwise stay very close to Gentzen’s sequent calculus, in particular they enjoy a subformula property in the literal sense. No semantic notions are used inside the proof systems, in particular there is no use of labels. All their rules are invertible and the rules cut, weakening and (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • (1 other version)Conceptual (and Hence Mathematical) Explanation, Conceptual Grounding and Proof.Francesca Poggiolesi & Francesco Genco - 2021 - Erkenntnis:1-27.
    This paper studies the notions of conceptual grounding and conceptual explanation (which includes the notion of mathematical explanation), with an aim of clarifying the links between them. On the one hand, it analyses complex examples of these two notions that bring to the fore features that are easily overlooked otherwise. On the other hand, it provides a formal framework for modeling both conceptual grounding and conceptual explanation, based on the concept of proof. Inspiration and analogies are drawn with the recent (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Theories of truth and the maxim of minimal mutilation.Ole Thomassen Hjortland - 2017 - Synthese 199 (Suppl 3):787-818.
    Nonclassical theories of truth have in common that they reject principles of classical logic to accommodate an unrestricted truth predicate. However, different nonclassical strategies give up different classical principles. The paper discusses one criterion we might use in theory choice when considering nonclassical rivals: the maxim of minimal mutilation.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Consequence Relations and Admissible Rules.Rosalie Iemhoff - 2016 - Journal of Philosophical Logic 45 (3):327-348.
    This paper contains a detailed account of the notion of admissibility in the setting of consequence relations. It is proved that the two notions of admissibility used in the literature coincide, and it provides an extension to multi–conclusion consequence relations that is more general than the one usually encountered in the literature on admissibility. The notion of a rule scheme is introduced to capture rules with side conditions, and it is shown that what is generally understood under the extension of (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Proof-Theoretic Semantics and Inquisitive Logic.Will Stafford - 2021 - Journal of Philosophical Logic 50 (5):1199-1229.
    Prawitz conjectured that proof-theoretic validity offers a semantics for intuitionistic logic. This conjecture has recently been proven false by Piecha and Schroeder-Heister. This article resolves one of the questions left open by this recent result by showing the extensional alignment of proof-theoretic validity and general inquisitive logic. General inquisitive logic is a generalisation of inquisitive semantics, a uniform semantics for questions and assertions. The paper further defines a notion of quasi-proof-theoretic validity by restricting proof-theoretic validity to allow double negation elimination (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Contraction, Infinitary Quantifiers, and Omega Paradoxes.Bruno Da Ré & Lucas Rosenblatt - 2018 - Journal of Philosophical Logic 47 (4):611-629.
    Our main goal is to investigate whether the infinitary rules for the quantifiers endorsed by Elia Zardini in a recent paper are plausible. First, we will argue that they are problematic in several ways, especially due to their infinitary features. Secondly, we will show that even if these worries are somehow dealt with, there is another serious issue with them. They produce a truth-theoretic paradox that does not involve the structural rules of contraction.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Peter Schroeder-Heister on Proof-Theoretic Semantics.Thomas Piecha & Kai F. Wehmeier (eds.) - 2024 - Springer.
    This open access book is a superb collection of some fifteen chapters inspired by Schroeder-Heister's groundbreaking work, written by leading experts in the field, plus an extensive autobiography and comments on the various contributions by Schroeder-Heister himself. For several decades, Peter Schroeder-Heister has been a central figure in proof-theoretic semantics, a field of study situated at the interface of logic, theoretical computer science, natural-language semantics, and the philosophy of language. -/- The chapters of which this book is composed discuss the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Naïve validity.Julien Murzi & Lorenzo Rossi - 2017 - Synthese 199 (Suppl 3):819-841.
    Beall and Murzi :143–165, 2013) introduce an object-linguistic predicate for naïve validity, governed by intuitive principles that are inconsistent with the classical structural rules. As a consequence, they suggest that revisionary approaches to semantic paradox must be substructural. In response to Beall and Murzi, Field :1–19, 2017) has argued that naïve validity principles do not admit of a coherent reading and that, for this reason, a non-classical solution to the semantic paradoxes need not be substructural. The aim of this paper (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Logical pluralism and semantic information.Patrick Allo - 2007 - Journal of Philosophical Logic 36 (6):659 - 694.
    Up to now theories of semantic information have implicitly relied on logical monism, or the view that there is one true logic. The latter position has been explicitly challenged by logical pluralists. Adopting an unbiased attitude in the philosophy of information, we take a suggestion from Beall and Restall at heart and exploit logical pluralism to recognise another kind of pluralism. The latter is called informational pluralism, a thesis whose implications for a theory of semantic information we explore.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • A Simple Sequent Calculus for Angell’s Logic of Analytic Containment.Rohan French - 2017 - Studia Logica 105 (5):971-994.
    We give a simple sequent calculus presentation of R.B. Angell’s logic of analytic containment, recently championed by Kit Fine as a plausible logic of partial content.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Proof Theory for Modal Logic.Sara Negri - 2011 - Philosophy Compass 6 (8):523-538.
    The axiomatic presentation of modal systems and the standard formulations of natural deduction and sequent calculus for modal logic are reviewed, together with the difficulties that emerge with these approaches. Generalizations of standard proof systems are then presented. These include, among others, display calculi, hypersequents, and labelled systems, with the latter surveyed from a closer perspective.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Aristotle, Logic, and QUARC.Jonas Raab - 2018 - History and Philosophy of Logic 39 (4):305-340.
    The goal of this paper is to present a new reconstruction of Aristotle's assertoric logic as he develops it in Prior Analytics, A1-7. This reconstruction will be much closer to Aristotle's original...
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Let Us Investigate! Dynamic Conjecture-Making as the Formal Logic of Abduction.Minghui Ma & Ahti-Veikko Pietarinen - 2018 - Journal of Philosophical Logic 47 (6):913-945.
    We present a dynamic approach to Peirce’s original construal of abductive logic as a logic of conjecture making, and provide a new decidable, contraction-free and cut-free proof system for the dynamic logic of abductive inferences with neighborhood semantics. Our formulation of the dynamic logic of abduction follows the philosophical and scientific track that led Peirce to his late, post-1903 characterization of abductive conclusions as investigands, namely invitations to investigate propositions conjectured at the level of pre-beliefs.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Natural Deduction, Hybrid Systems and Modal Logics.Andrzej Indrzejczak - 2010 - Dordrecht, Netherland: Springer.
    This book provides a detailed exposition of one of the most practical and popular methods of proving theorems in logic, called Natural Deduction. It is presented both historically and systematically. Also some combinations with other known proof methods are explored. The initial part of the book deals with Classical Logic, whereas the rest is concerned with systems for several forms of Modal Logics, one of the most important branches of modern logic, which has wide applicability.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • A Simple Logic of Functional Dependence.Alexandru Baltag & Johan van Benthem - 2021 - Journal of Philosophical Logic 50 (5):939-1005.
    This paper presents a simple decidable logic of functional dependence LFD, based on an extension of classical propositional logic with dependence atoms plus dependence quantifiers treated as modalities, within the setting of generalized assignment semantics for first order logic. The expressive strength, complete proof calculus and meta-properties of LFD are explored. Various language extensions are presented as well, up to undecidable modal-style logics for independence and dynamic logics of changing dependence models. Finally, more concrete settings for dependence are discussed: continuous (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Implicit Commitment of Arithmetical Theories and Its Semantic Core.Carlo Nicolai & Mario Piazza - 2019 - Erkenntnis 84 (4):913-937.
    According to the implicit commitment thesis, once accepting a mathematical formal system S, one is implicitly committed to additional resources not immediately available in S. Traditionally, this thesis has been understood as entailing that, in accepting S, we are bound to accept reflection principles for S and therefore claims in the language of S that are not derivable in S itself. It has recently become clear, however, that such reading of the implicit commitment thesis cannot be compatible with well-established positions (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Stories of Logic and Information.Johan van Benthem, Maricarmen Martinez, David Israel & John Perry - unknown
    Information is a notion of wide use and great intuitive appeal, and hence, not surprisingly, different formal paradigms claim part of it, from Shannon channel theory to Kolmogorov complexity. Information is also a widely used term in logic, but a similar diversity repeats itself: there are several competing logical accounts of this notion, ranging from semantic to syntactic. In this chapter, we will discuss three major logical accounts of information.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • A More Unified Approach to Free Logics.Edi Pavlović & Norbert Gratzl - 2020 - Journal of Philosophical Logic 50 (1):117-148.
    Free logics is a family of first-order logics which came about as a result of examining the existence assumptions of classical logic. What those assumptions are varies, but the central ones are that the domain of interpretation is not empty, every name denotes exactly one object in the domain and the quantifiers have existential import. Free logics usually reject the claim that names need to denote in, and of the systems considered in this paper, the positive free logic concedes that (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Proof-theoretic harmony: towards an intensional account.Luca Tranchini - 2016 - Synthese 198 (Suppl 5):1145-1176.
    In this paper we argue that an account of proof-theoretic harmony based on reductions and expansions delivers an inferentialist picture of meaning which should be regarded as intensional, as opposed to other approaches to harmony that will be dubbed extensional. We show how the intensional account applies to any connective whose rules obey the inversion principle first proposed by Prawitz and Schroeder-Heister. In particular, by improving previous formulations of expansions, we solve a problem with quantum-disjunction first posed by Dummett. As (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • An ecumenical notion of entailment.Elaine Pimentel, Luiz Carlos Pereira & Valeria de Paiva - 2019 - Synthese 198 (S22):5391-5413.
    Much has been said about intuitionistic and classical logical systems since Gentzen’s seminal work. Recently, Prawitz and others have been discussing how to put together Gentzen’s systems for classical and intuitionistic logic in a single unified system. We call Prawitz’ proposal the Ecumenical System, following the terminology introduced by Pereira and Rodriguez. In this work we present an Ecumenical sequent calculus, as opposed to the original natural deduction version, and state some proof theoretical properties of the system. We reason that (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Normalisation and subformula property for a system of intuitionistic logic with general introduction and elimination rules.Nils Kürbis - 2021 - Synthese 199 (5-6):14223-14248.
    This paper studies a formalisation of intuitionistic logic by Negri and von Plato which has general introduction and elimination rules. The philosophical importance of the system is expounded. Definitions of ‘maximal formula’, ‘segment’ and ‘maximal segment’ suitable to the system are formulated and corresponding reduction procedures for maximal formulas and permutative reduction procedures for maximal segments given. Alternatives to the main method used are also considered. It is shown that deductions in the system convert into normal form and that deductions (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Normalisation and subformula property for a system of classical logic with Tarski’s rule.Nils Kürbis - 2021 - Archive for Mathematical Logic 61 (1):105-129.
    This paper considers a formalisation of classical logic using general introduction rules and general elimination rules. It proposes a definition of ‘maximal formula’, ‘segment’ and ‘maximal segment’ suitable to the system, and gives reduction procedures for them. It is then shown that deductions in the system convert into normal form, i.e. deductions that contain neither maximal formulas nor maximal segments, and that deductions in normal form satisfy the subformula property. Tarski’s Rule is treated as a general introduction rule for implication. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Church–Fitch knowability paradox in the light of structural proof theory.Paolo Maffezioli, Alberto Naibo & Sara Negri - 2012 - Synthese 190 (14):2677-2716.
    Anti-realist epistemic conceptions of truth imply what is called the knowability principle: All truths are possibly known. The principle can be formalized in a bimodal propositional logic, with an alethic modality ${\diamondsuit}$ and an epistemic modality ${\mathcal{K}}$, by the axiom scheme ${A \supset \diamondsuit \mathcal{K} A}$. The use of classical logic and minimal assumptions about the two modalities lead to the paradoxical conclusion that all truths are known, ${A \supset \mathcal{K} A}$. A Gentzen-style reconstruction of the Church–Fitch paradox is presented (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • A Note on Synonymy in Proof-Theoretic Semantics.Heinrich Wansing - 2024 - In Thomas Piecha & Kai F. Wehmeier (eds.), Peter Schroeder-Heister on Proof-Theoretic Semantics. Springer. pp. 339-362.
    The topic of identity of proofs was put on the agenda of general (or structural) proof theory at an early stage. The relevant question is: When are the differences between two distinct proofs (understood as linguistic entities, proof figures) of one and the same formula so inessential that it is justified to identify the two proofs? The paper addresses another question: When are the differences between two distinct formulas so inessential that these formulas admit of identical proofs? The question appears (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On Rules.Rosalie Iemhoff - 2015 - Journal of Philosophical Logic 44 (6):697-711.
    This paper contains a brief overview of the area of admissible rules with an emphasis on results about intermediate and modal propositional logics. No proofs are given but many references to the literature are provided.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A novel approach to equality.Andrzej Indrzejczak - 2021 - Synthese 199 (1-2):4749-4774.
    A new type of formalization of classical first-order logic with equality is introduced on the basis of the sequent calculus. It serves to justify the claim that equality is a logical constant characterised by well-behaved rules satisfying properties usually regarded as essential. The main feature of this approach is the application of sequents built not only from formulae but also from terms. Two variants of sequent calculus are examined, a structural and a logical one. The former is defined in accordance (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Paradoxes, Intuitionism, and Proof-Theoretic Semantics.Reinhard Kahle & Paulo Guilherme Santos - 2024 - In Thomas Piecha & Kai F. Wehmeier (eds.), Peter Schroeder-Heister on Proof-Theoretic Semantics. Springer. pp. 363-374.
    In this note, we review paradoxes like Russell’s, the Liar, and Curry’s in the context of intuitionistic logic. One may observe that one cannot blame the underlying logic for the paradoxes, but has to take into account the particular concept formations. For proof-theoretic semantics, however, this comes with the challenge to block some forms of direct axiomatizations of the Liar. A proper answer to this challenge might be given by Schroeder-Heister’s definitional freedom.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Multimodal Pragmatic Treatment of the Knowability Paradox.Massimiliano Carrara, Daniele Chiffi & Davide Sergio - 2017 - In Gillman Payette & Rafał Urbaniak (eds.), Applications of Formal Philosophy: The Road Less Travelled. Cham, Switzerland: Springer International Publishing AG. pp. 195-209.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Are Uniqueness and Deducibility of Identicals the Same?Alberto Naibo & Mattia Petrolo - 2014 - Theoria 81 (2):143-181.
    A comparison is given between two conditions used to define logical constants: Belnap's uniqueness and Hacking's deducibility of identicals. It is shown that, in spite of some surface similarities, there is a deep difference between them. On the one hand, deducibility of identicals turns out to be a weaker and less demanding condition than uniqueness. On the other hand, deducibility of identicals is shown to be more faithful to the inferentialist perspective, permitting definition of genuinely proof-theoretical concepts. This kind of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Subformula and separation properties in natural deduction via small Kripke models: Subformula and separation properties.Peter Milne - 2010 - Review of Symbolic Logic 3 (2):175-227.
    Various natural deduction formulations of classical, minimal, intuitionist, and intermediate propositional and first-order logics are presented and investigated with respect to satisfaction of the separation and subformula properties. The technique employed is, for the most part, semantic, based on general versions of the Lindenbaum and Lindenbaum–Henkin constructions. Careful attention is paid to which properties of theories result in the presence of which rules of inference, and to restrictions on the sets of formulas to which the rules may be employed, restrictions (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Definite Descriptions in Intuitionist Positive Free Logic.Nils Kürbis - 2020 - Logic and Logical Philosophy 30:1.
    This paper presents rules of inference for a binary quantifier I for the formalisation of sentences containing definite descriptions within intuitionist positive free logic. I binds one variable and forms a formula from two formulas. Ix[F, G] means ‘The F is G’. The system is shown to have desirable proof-theoretic properties: it is proved that deductions in it can be brought into normal form. The discussion is rounded up by comparisons between the approach to the formalisation of definite descriptions recommended (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On Formally Measuring and Eliminating Extraneous Notions in Proofs.Andrew Arana - 2009 - Philosophia Mathematica 17 (2):189-207.
    Many mathematicians and philosophers of mathematics believe some proofs contain elements extraneous to what is being proved. In this paper I discuss extraneousness generally, and then consider a specific proposal for measuring extraneousness syntactically. This specific proposal uses Gentzen's cut-elimination theorem. I argue that the proposal fails, and that we should be skeptical about the usefulness of syntactic extraneousness measures.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Molecularity in the Theory of Meaning and the Topic Neutrality of Logic.Bernhard Weiss & Nils Kürbis - 2024 - In Antonio Piccolomini D'Aragona (ed.), Perspectives on Deduction: Contemporary Studies in the Philosophy, History and Formal Theories of Deduction. Springer Verlag. pp. 187-209.
    Without directly addressing the Demarcation Problem for logic—the problem of distinguishing logical vocabulary from others—we focus on distinctive aspects of logical vocabulary in pursuit of a second goal in the philosophy of logic, namely, proposing criteria for the justification of logical rules. Our preferred approach has three components. Two of these are effectively Belnap’s, but with a twist. We agree with Belnap’s response to Prior’s challenge to inferentialist characterisations of the meanings of logical constants. Belnap argued that for a logical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Socratic Trees.Dorota Leszczyńska-Jasion, Mariusz Urbański & Andrzej Wiśniewski - 2013 - Studia Logica 101 (5):959-986.
    The method of Socratic proofs (SP-method) simulates the solving of logical problem by pure questioning. An outcome of an application of the SP-method is a sequence of questions, called a Socratic transformation. Our aim is to give a method of translation of Socratic transformations into trees. We address this issue both conceptually and by providing certain algorithms. We show that the trees which correspond to successful Socratic transformations—that is, to Socratic proofs—may be regarded, after a slight modification, as Gentzen-style proofs. (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A note on cut-elimination for classical propositional logic.Gabriele Pulcini - 2022 - Archive for Mathematical Logic 61 (3):555-565.
    In Schwichtenberg, Schwichtenberg fine-tuned Tait’s technique so as to provide a simplified version of Gentzen’s original cut-elimination procedure for first-order classical logic. In this note we show that, limited to the case of classical propositional logic, the Tait–Schwichtenberg algorithm allows for a further simplification. The procedure offered here is implemented on Kleene’s sequent system G4. The specific formulation of the logical rules for G4 allows us to provide bounds on the height of cut-free proofs just in terms of the logical (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations