Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)Jumps of nontrivial splittings of recursively enumerable sets.Michael A. Ingrassia & Steffen Lempp - 1990 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 36 (4):285-292.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The universal splitting property. II.M. Lerman & J. B. Remmel - 1984 - Journal of Symbolic Logic 49 (1):137-150.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Three theorems on recursive enumeration. I. decomposition. II. maximal set. III. enumeration without duplication.Richard M. Friedberg - 1958 - Journal of Symbolic Logic 23 (3):309-316.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Mitotic recursively enumerable sets.Richard E. Ladner - 1973 - Journal of Symbolic Logic 38 (2):199-211.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Splitting theorems in recursion theory.Rod Downey & Michael Stob - 1993 - Annals of Pure and Applied Logic 65 (1):1-106.
    A splitting of an r.e. set A is a pair A1, A2 of disjoint r.e. sets such that A1 A2 = A. Theorems about splittings have played an important role in recursion theory. One of the main reasons for this is that a splitting of A is a decomposition of A in both the lattice, , of recursively enumerable sets and in the uppersemilattice, R, of recursively enumerable degrees . Thus splitting theor ems have been used to obtain results about (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • (1 other version)Jumps of nontrivial splittings of recursively enumerable sets.Michael A. Ingrassia & Steffen Lempp - 1990 - Mathematical Logic Quarterly 36 (4):285-292.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Degree theoretical splitting properties of recursively enumerable sets.Klaus Ambos-Spies & Peter A. Fejer - 1988 - Journal of Symbolic Logic 53 (4):1110-1137.
    A recursively enumerable splitting of an r.e. setAis a pair of r.e. setsBandCsuch thatA=B∪CandB∩C= ⊘. Since for such a splitting degA= degB∪ degC, r.e. splittings proved to be a quite useful notion for investigations into the structure of the r.e. degrees. Important splitting theorems, like Sacks splitting [S1], Robinson splitting [R1] and Lachlan splitting [L3], use r.e. splittings.Since each r.e. splitting of a set induces a splitting of its degree, it is natural to study the relation between the degrees of (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Completely mitotic R.E. degrees.R. G. Downey & T. A. Slaman - 1989 - Annals of Pure and Applied Logic 41 (2):119-152.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Anti‐Mitotic Recursively Enumerable Sets.Klaus Ambos-Spies - 1985 - Mathematical Logic Quarterly 31 (29-30):461-477.
    Download  
     
    Export citation  
     
    Bookmark   11 citations