Switch to: Citations

Add references

You must login to add references.
  1. (2 other versions)Set Theory.Thomas Jech - 1999 - Studia Logica 63 (2):300-300.
    Download  
     
    Export citation  
     
    Bookmark   329 citations  
  • An extension of borel determinacy.Donald A. Martin - 1990 - Annals of Pure and Applied Logic 49 (3):279-293.
    We prove the determinacy of all Δ 1 1 games on arbitrary trees, and we use this result and the assumption that a measurable cardinal exists to demonstrate the determinacy of all games on ω ω that belong both to – Π 1 1 and to its dual.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Determinacy and extended sharp functions on the reals, Part II: obtaining sharps from determinacy.Derrick Albert DuBose - 1992 - Annals of Pure and Applied Logic 58 (1):1-28.
    For several partial sharp functions # on the reals, we characterize in terms of determinacy, the existence of indiscernibles for several inner models of “# exists for every real r”. Let #10=1#10 be the identity function on the reals. Inductively define the partial sharp function, β#1γ+1, on the reals so that #1γ+1 =1#1γ+1 codes indiscernibles for L [#11, #12,…, #1γ] and #1γ+1=#1γ+1). We sho w that the existence of β#1γ follows from the determinacy of *Σ01)*+ games . Part I proves (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Determinacy and the sharp function on the reals.Derrick Albert DuBose - 1992 - Annals of Pure and Applied Logic 55 (3):237-263.
    DuBose, D.A., Determinacy and the sharp function on the reals, Annals of Pure and Applied Logic 55 237–263. We characterize in terms of determinacy, the existence of the least inner model of “every real has a sharp”. We let 1 be the sharp function on the reals and define two classes of sets, * and *+, which lie strictly between β<ω2 an d Δ. We show that the determinacy of * follows from L[#1] xvR; “every real has a sharp”; and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Descriptive Set Theory.Yiannis Nicholas Moschovakis - 1982 - Studia Logica 41 (4):429-430.
    Download  
     
    Export citation  
     
    Bookmark   161 citations