Switch to: References

Citations of:

Set Theory

Studia Logica 63 (2):300-300 (1999)

Add citations

You must login to add citations.
  1. Naïve Truth and the Evidential Conditional.Andrea Iacona & Lorenzo Rossi - 2024 - Journal of Philosophical Logic 53 (2):559-584.
    This paper develops the idea that valid arguments are equivalent to true conditionals by combining Kripke’s theory of truth with the evidential account of conditionals offered by Crupi and Iacona. As will be shown, in a first-order language that contains a naïve truth predicate and a suitable conditional, one can define a validity predicate in accordance with the thesis that the inference from a conjunction of premises to a conclusion is valid when the corresponding conditional is true. The validity predicate (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Metaphysical explanations: The case of singleton sets revisited.Kai Michael Büttner - 2024 - Theoria 90 (1):98-108.
    Many contemporary metaphysicians believe that the existence of a contingent object such as Socrates metaphysically explains the existence of the corresponding set {Socrates}. This paper argues that this belief is mistaken. The argument proposed takes the form of a dilemma. The expression “{Socrates}” is a shorthand either for the expression “the set that contains all and only those objects that are identical to Socrates” or for the expression “the set that contains Socrates and nothing else”. However, Socrates' existence does not (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Boolean Valued Models, Boolean Valuations, and Löwenheim-Skolem Theorems.Xinhe Wu - 2023 - Journal of Philosophical Logic 53 (1):293-330.
    Boolean-valued models for first-order languages generalize two-valued models, in that the value range is allowed to be any complete Boolean algebra instead of just the Boolean algebra 2. Boolean-valued models are interesting in multiple aspects: philosophical, logical, and mathematical. The primary goal of this paper is to extend a number of critical model-theoretic notions and to generalize a number of important model-theoretic results based on these notions to Boolean-valued models. For instance, we will investigate (first-order) Boolean valuations, which are natural (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Formal Layer of {Brain and Mind} and Emerging Consciousness in Physical Systems.Jerzy Król & Andrew Schumann - forthcoming - Foundations of Science:1-30.
    We consider consciousness attributed to systems in space-time which can be purely physical without biological background and focus on the mathematical understanding of the phenomenon. It is shown that the set theory based on sets in the foundations of mathematics, when switched to set theory based on ZFC models, is a very promising mathematical tool in explaining the brain/mind complex and the emergence of consciousness in natural and artificial systems. We formalise consciousness-supporting systems in physical space-time, but this is localised (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Boolean valued semantics for infinitary logics.Juan M. Santiago Suárez & Matteo Viale - 2024 - Annals of Pure and Applied Logic 175 (1):103333.
    Download  
     
    Export citation  
     
    Bookmark  
  • Countable products and countable direct sums of compact metrizable spaces in the absence of the Axiom of Choice.Kyriakos Keremedis, Eleftherios Tachtsis & Eliza Wajch - 2023 - Annals of Pure and Applied Logic 174 (7):103283.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Mathematical Pluralism and Indispensability.Silvia Jonas - 2023 - Erkenntnis 1:1-25.
    Pluralist mathematical realism, the view that there exists more than one mathematical universe, has become an influential position in the philosophy of mathematics. I argue that, if mathematical pluralism is true (and we have good reason to believe that it is), then mathematical realism cannot (easily) be justified by arguments from the indispensability of mathematics to science. This is because any justificatory chain of inferences from mathematical applications in science to the total body of mathematical theorems can cover at most (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quasi-set theory: a formal approach to a quantum ontology of properties.Federico Holik, Juan Pablo Jorge, Décio Krause & Olimpia Lombardi - 2022 - Synthese 200 (5):1-26.
    In previous works, an ontology of properties for quantum mechanics has been proposed, according to which quantum systems are bundles of properties with no principle of individuality. The aim of the present article is to show that, since quasi-set theory is particularly suited for dealing with aggregates of items that do not belong to the traditional category of individual, it supplies an adequate meta-language to speak of the proposed ontology of properties and its structure.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Random World and Quantum Mechanics.Jerzy Król, Krzysztof Bielas & Torsten Asselmeyer-Maluga - 2023 - Foundations of Science 28 (2):575-625.
    Quantum mechanics (QM) predicts probabilities on the fundamental level which are, via Born probability law, connected to the formal randomness of infinite sequences of QM outcomes. Recently it has been shown that QM is algorithmic 1-random in the sense of Martin–Löf. We extend this result and demonstrate that QM is algorithmic $$\omega$$ -random and generic, precisely as described by the ’miniaturisation’ of the Solovay forcing to arithmetic. This is extended further to the result that QM becomes Zermelo–Fraenkel Solovay random on (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What Can You Say? Measuring the Expressive Power of Languages.Alexander Kocurek - 2018 - Dissertation, University of California, Berkeley
    There are many different ways to talk about the world. Some ways of talking are more expressive than others—that is, they enable us to say more things about the world. But what exactly does this mean? When is one language able to express more about the world than another? In my dissertation, I systematically investigate different ways of answering this question and develop a formal theory of expressive power, translation, and notational variance. In doing so, I show how these investigations (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Ns Saturated and -Definable.Stefan Hoffelner - 2021 - Journal of Symbolic Logic 86 (1):25-59.
    We show that under the assumption of the existence of the canonical inner model with one Woodin cardinal$M_1$, there is a model of$\mathsf {ZFC}$in which$\mbox {NS}_{\omega _{1}}$is$\aleph _2$-saturated and${\Delta }_{1}$-definable with$\omega _1$as a parameter which answers a question of S. D. Friedman and L. Wu. We also show that starting from an arbitrary universe with a Woodin cardinal, there is a model with$\mbox {NS}_{\omega _{1}}$saturated and${\Delta }_{1}$-definable with a ladder system$\vec {C}$and a full Suslin treeTas parameters. Both results rely on (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mathematizing as a virtuous practice: different narratives and their consequences for mathematics education and society.Deborah Kant & Deniz Sarikaya - 2020 - Synthese 199 (1-2):3405-3429.
    There are different narratives on mathematics as part of our world, some of which are more appropriate than others. Such narratives might be of the form ‘Mathematics is useful’, ‘Mathematics is beautiful’, or ‘Mathematicians aim at theorem-credit’. These narratives play a crucial role in mathematics education and in society as they are influencing people’s willingness to engage with the subject or the way they interpret mathematical results in relation to real-world questions; the latter yielding important normative considerations. Our strategy is (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Concerning the Solution to the Russell's paradox.I. M. R. Pinheiro - 2012 - E-Logos 19 (1):1-15.
    Download  
     
    Export citation  
     
    Bookmark  
  • N-Berkeley cardinals and weak extender models.Raffaella Cutolo - 2020 - Journal of Symbolic Logic 85 (2):809-816.
    For a given inner model N of ZFC, one can consider the relativized version of Berkeley cardinals in the context of ZFC, and ask if there can exist an “N-Berkeley cardinal.” In this article we provide a positive answer to this question. Indeed, under the assumption of a supercompact cardinal $\delta $, we show that there exists a ZFC inner model N such that there is a cardinal which is N-Berkeley, even in a strong sense. Further, the involved model N (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Chance and the Continuum Hypothesis.Daniel Hoek - 2020 - Philosophy and Phenomenological Research 103 (3):639-60.
    This paper presents and defends an argument that the continuum hypothesis is false, based on considerations about objective chance and an old theorem due to Banach and Kuratowski. More specifically, I argue that the probabilistic inductive methods standardly used in science presuppose that every proposition about the outcome of a chancy process has a certain chance between 0 and 1. I also argue in favour of the standard view that chances are countably additive. Since it is possible to randomly pick (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Hypergraphs and proper forcing.Jindřich Zapletal - 2019 - Journal of Mathematical Logic 19 (2):1950007.
    Given a Polish space X and a countable collection of analytic hypergraphs on X, I consider the σ-ideal generated by Borel anticliques for the hypergraphs in the family. It turns out that many of the quotient posets are proper. I investigate the forcing properties of these posets, certain natural operations on them, and prove some related dichotomies.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Quantification and Paradox.Edward Ferrier - 2018 - Dissertation, University of Massachusetts Amherst
    I argue that absolutism, the view that absolutely unrestricted quantification is possible, is to blame for both the paradoxes that arise in naive set theory and variants of these paradoxes that arise in plural logic and in semantics. The solution is restrictivism, the view that absolutely unrestricted quantification is not possible. -/- It is generally thought that absolutism is true and that restrictivism is not only false, but inexpressible. As a result, the paradoxes are blamed, not on illicit quantification, but (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The tree property at the double successor of a singular cardinal with a larger gap.Sy-David Friedman, Radek Honzik & Šárka Stejskalová - 2018 - Annals of Pure and Applied Logic 169 (6):548-564.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Squares and narrow systems.Chris Lambie-Hanson - 2017 - Journal of Symbolic Logic 82 (3):834-859.
    A narrow system is a combinatorial object introduced by Magidor and Shelah in connection with work on the tree property at successors of singular cardinals. In analogy to the tree property, a cardinalκsatisfies thenarrow system propertyif every narrow system of heightκhas a cofinal branch. In this paper, we study connections between the narrow system property, square principles, and forcing axioms. We prove, assuming large cardinals, both that it is consistent that ℵω+1satisfies the narrow system property and$\square _{\aleph _\omega, < \aleph (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • God meets Satan’s Apple: the paradox of creation.Rubio Daniel - 2018 - Philosophical Studies 175 (12):2987-3004.
    It is now the majority view amongst philosophers and theologians that any world could have been better. This places the choice of which world to create into an especially challenging class of decision problems: those that are discontinuous in the limit. I argue that combining some weak, plausible norms governing this type of problem with a creator who has the attributes of the god of classical theism results in a paradox: no world is possible. After exploring some ways out of (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Axiomatic Theories of Partial Ground II: Partial Ground and Hierarchies of Typed Truth.Johannes Korbmacher - 2018 - Journal of Philosophical Logic 47 (2):193-226.
    This is part two of a two-part paper in which we develop an axiomatic theory of the relation of partial ground. The main novelty of the paper is the of use of a binary ground predicate rather than an operator to formalize ground. In this part of the paper, we extend the base theory of the first part of the paper with hierarchically typed truth-predicates and principles about the interaction of partial ground and truth. We show that our theory is (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A Co-Analytic Cohen-Indestructible Maximal Cofinitary Group.Vera Fischer, David Schrittesser & Asger Törnquist - 2017 - Journal of Symbolic Logic 82 (2):629-647.
    Assuming that every set is constructible, we find a${\text{\Pi }}_1^1 $maximal cofinitary group of permutations of$\mathbb{N}$which is indestructible by Cohen forcing. Thus we show that the existence of such groups is consistent with arbitrarily large continuum. Our method also gives a new proof, inspired by the forcing method, of Kastermans’ result that there exists a${\text{\Pi }}_1^1 $maximal cofinitary group inL.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On a Class of M.A.D. Families.Yi Zhang - 1999 - Journal of Symbolic Logic 64 (2):737-746.
    We compare several closely related continuum invariants, i.e., $\mathfrak{a}$, $\mathfrak{a}_\mathfrak{e}$, $\mathfrak{a}_\mathfrak{p}$ in two forcing models. And we shall ask some open questions in this field.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Solovay-Type Characterizations for Forcing-Algebras.Jörg Brendle & Benedikt Löwe - 1999 - Journal of Symbolic Logic 64 (3):1307-1323.
    We give characterizations for the sentences "Every $\Sigma^1_2$-set is measurable" and "Every $\Delta^1_2$-set is measurable" for various notions of measurability derived from well-known forcing partial orderings.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Logic in the Tractatus.Max Weiss - 2017 - Review of Symbolic Logic 10 (1):1-50.
    I present a reconstruction of the logical system of the Tractatus, which differs from classical logic in two ways. It includes an account of Wittgenstein’s “form-series” device, which suffices to express some effectively generated countably infinite disjunctions. And its attendant notion of structure is relativized to the fixed underlying universe of what is named. -/- There follow three results. First, the class of concepts definable in the system is closed under finitary induction. Second, if the universe of objects is countably (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Ortega y Gasset on Georg Cantor’s Theory of Transfinite Numbers.Lior Rabi - 2016 - Kairos (15):46-70.
    Ortega y Gasset is known for his philosophy of life and his effort to propose an alternative to both realism and idealism. The goal of this article is to focus on an unfamiliar aspect of his thought. The focus will be given to Ortega’s interpretation of the advancements in modern mathematics in general and Cantor’s theory of transfinite numbers in particular. The main argument is that Ortega acknowledged the historical importance of the Cantor’s Set Theory, analyzed it and articulated a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • N–localization property.Andrzej Rosłanowski - 2006 - Journal of Symbolic Logic 71 (3):881 - 902.
    This paper is concerned with n-localization property introduced by Newelski and Rosłanowski in [10] and getting it for CS iterations of forcing notions.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Proofs of the Compactness Theorem.Alexander Paseau - 2010 - History and Philosophy of Logic 31 (1):73-98.
    In this study, several proofs of the compactness theorem for propositional logic with countably many atomic sentences are compared. Thereby some steps are taken towards a systematic philosophical study of the compactness theorem. In addition, some related data and morals for the theory of mathematical explanation are presented.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Ramsey Sets, the Ramsey Ideal, and Other Classes Over $\mathbf{R}$.Paul Corazza - 1992 - Journal of Symbolic Logic 57 (4):1441-1468.
    We improve results of Marczewski, Frankiewicz, Brown, and others comparing the $\sigma$-ideals of measure zero, meager, Marczewski measure zero, and completely Ramsey null sets; in particular, we remove CH from the hypothesis of many of Brown's constructions of sets lying in some of these ideals but not in others. We improve upon work of Marczewski by constructing, without CH, a nonmeasurable Marczewski measure zero set lacking the property of Baire. We extend our analysis of $\sigma$-ideals to include the completely Ramsey (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Countable unions of simple sets in the core model.P. D. Welch - 1996 - Journal of Symbolic Logic 61 (1):293-312.
    We follow [8] in asking when a set of ordinals $X \subseteq \alpha$ is a countable union of sets in K, the core model. We show that, analogously to L, and X closed under the canonical Σ 1 Skolem function for K α can be so decomposed provided K is such that no ω-closed filters are put on its measure sequence, but not otherwise. This proviso holds if there is no inner model of a weak Erdős-type property.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The equivalence of a generalized Martin's axiom to a combinatorial principle.William Weiss - 1981 - Journal of Symbolic Logic 46 (4):817-821.
    A generalized version of Martin's axiom, called BACH, is shown to be equivalent to one of its combinatorial consequences, a generalization of P(c).
    Download  
     
    Export citation  
     
    Bookmark  
  • Q-pointness, p-pointness and feebleness of ideals.Pierre Matet & Janusz Pawlikowski - 2003 - Journal of Symbolic Logic 68 (1):235-261.
    We study the degree of (weak) Q-pointness, and that of (weak) P-pointness, of ideals on a regular infinite cardinal.
    Download  
     
    Export citation  
     
    Bookmark  
  • Superatomic Boolean algebras constructed from morasses.Peter Koepke & Juan Carlos Martínez - 1995 - Journal of Symbolic Logic 60 (3):940-951.
    By using the notion of a simplified (κ,1)-morass, we construct κ-thin-tall, κ-thin-thick and, in a forcing extension, κ-very thin-thick superatomic Boolean algebras for every infinite regular cardinal κ.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Martin's axiom and the continuum.Haim Judah & Andrzej Rosłanowski - 1995 - Journal of Symbolic Logic 60 (2):374-391.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Consequences of arithmetic for set theory.Lorenz Halbeisen & Saharon Shelah - 1994 - Journal of Symbolic Logic 59 (1):30-40.
    In this paper, we consider certain cardinals in ZF (set theory without AC, the axiom of choice). In ZFC (set theory with AC), given any cardinals C and D, either C ≤ D or D ≤ C. However, in ZF this is no longer so. For a given infinite set A consider $\operatorname{seq}^{1 - 1}(A)$ , the set of all sequences of A without repetition. We compare $|\operatorname{seq}^{1 - 1}(A)|$ , the cardinality of this set, to |P(A)|, the cardinality of (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • μ-clubs of P(λ): Paradise in heaven.Pierre Matet - 2025 - Annals of Pure and Applied Logic 176 (1):103497.
    Download  
     
    Export citation  
     
    Bookmark  
  • Does Imply, Uniformly?Alessandro Andretta & Lorenzo Notaro - forthcoming - Journal of Symbolic Logic:1-25.
    The axiom of dependent choice ( $\mathsf {DC}$ ) and the axiom of countable choice ( ${\mathsf {AC}}_\omega $ ) are two weak forms of the axiom of choice that can be stated for a specific set: $\mathsf {DC} ( X )$ asserts that any total binary relation on X has an infinite chain, while ${\mathsf {AC}}_\omega ( X )$ asserts that any countable collection of nonempty subsets of X has a choice function. It is well-known that $\mathsf {DC} \Rightarrow (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Finite Additivity, Complete Additivity, and the Comparative Principle.Teddy Seidenfeld, Joseph B. Kadane, Mark J. Schervish & Rafael B. Stern - forthcoming - Erkenntnis:1-24.
    In the longstanding foundational debate whether to require that probability is countably additive, in addition to being finitely additive, those who resist the added condition raise two concerns that we take up in this paper. (1) _Existence_: Settings where no countably additive probability exists though finitely additive probabilities do. (2) _Complete Additivity_: Where reasons for countable additivity don’t stop there. Those reasons entail complete additivity—the (measurable) union of probability 0 sets has probability 0, regardless the cardinality of that union. Then (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Two-Sorted Frege Arithmetic is Not Conservative.Stephen Mackereth & Jeremy Avigad - 2022 - Review of Symbolic Logic 16 (4):1199-1232.
    Neo-Fregean logicists claim that Hume’s Principle (HP) may be taken as an implicit definition of cardinal number, true simply by fiat. A long-standing problem for neo-Fregean logicism is that HP is not deductively conservative over pure axiomatic second-order logic. This seems to preclude HP from being true by fiat. In this paper, we study Richard Kimberly Heck’s Two-Sorted Frege Arithmetic (2FA), a variation on HP which has been thought to be deductively conservative over second-order logic. We show that it isn’t. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Constructing the constructible universe constructively.Michael Rathjen - 2024 - Annals of Pure and Applied Logic 175 (3):103392.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Steel’s Programme: Evidential Framework, the Core and Ultimate- L.Joan Bagaria & Claudio Ternullo - 2023 - Review of Symbolic Logic 16 (3):788-812.
    We address Steel’s Programme to identify a ‘preferred’ universe of set theory and the best axioms extending $\mathsf {ZFC}$ by using his multiverse axioms $\mathsf {MV}$ and the ‘core hypothesis’. In the first part, we examine the evidential framework for $\mathsf {MV}$, in particular the use of large cardinals and of ‘worlds’ obtained through forcing to ‘represent’ alternative extensions of $\mathsf {ZFC}$. In the second part, we address the existence and the possible features of the core of $\mathsf {MV}_T$ (where (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The relative strengths of fragments of Martin's axiom.Joan Bagaria - 2024 - Annals of Pure and Applied Logic 175 (1):103330.
    Download  
     
    Export citation  
     
    Bookmark  
  • An undecidable extension of Morley's theorem on the number of countable models.Christopher J. Eagle, Clovis Hamel, Sandra Müller & Franklin D. Tall - 2023 - Annals of Pure and Applied Logic 174 (9):103317.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Models as Fundamental Entities in Set Theory: A Naturalistic and Practice-based Approach.Carolin Antos - 2022 - Erkenntnis 89 (4):1683-1710.
    This article addresses the question of fundamental entities in set theory. It takes up J. Hamkins’ claim that models of set theory are such fundamental entities and investigates it using the methodology of P. Maddy’s naturalism, Second Philosophy. In accordance with this methodology, I investigate the historical case study of the use of models in the introduction of forcing, compare this case to contemporary practice and give a systematic account of how set-theoretic practice can be said to introduce models as (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Compactness versus hugeness at successor cardinals.Sean Cox & Monroe Eskew - 2022 - Journal of Mathematical Logic 23 (1).
    If [Formula: see text] is regular and [Formula: see text], then the existence of a weakly presaturated ideal on [Formula: see text] implies [Formula: see text]. This partially answers a question of Foreman and Magidor about the approachability ideal on [Formula: see text]. As a corollary, we show that if there is a presaturated ideal [Formula: see text] on [Formula: see text] such that [Formula: see text] is semiproper, then CH holds. We also show some barriers to getting the tree (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Exact saturation in pseudo-elementary classes for simple and stable theories.Itay Kaplan, Nicholas Ramsey & Saharon Shelah - 2022 - Journal of Mathematical Logic 23 (2).
    We use exact saturation to study the complexity of unstable theories, showing that a variant of this notion called pseudo-elementary class (PC)-exact saturation meaningfully reflects combinatorial dividing lines. We study PC-exact saturation for stable and simple theories. Among other results, we show that PC-exact saturation characterizes the stability cardinals of size at least continuum of a countable stable theory and, additionally, that simple unstable theories have PC-exact saturation at singular cardinals satisfying mild set-theoretic hypotheses. This had previously been open even (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Gap‐2 morass‐definable η 1 ‐orderings.Bob A. Dumas - 2022 - Mathematical Logic Quarterly 68 (2):227-242.
    We prove that in the Cohen extension adding ℵ3 generic reals to a model of containing a simplified (ω1, 2)‐morass, gap‐2 morass‐definable η1‐orderings with cardinality ℵ3 are order‐isomorphic. Hence it is consistent that and that morass‐definable η1‐orderings with cardinality of the continuum are order‐isomorphic. We prove that there are ultrapowers of over ω that are gap‐2 morass‐definable. The constructions use a simplified gap‐2 morass, and commutativity with morass‐maps and morass‐embeddings, to extend a transfinite back‐and‐forth construction of order‐type ω1 to an (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Trees and Stationary Reflection at Double Successors of Regular Cardinals.Thomas Gilton, Maxwell Levine & Šárka Stejskalová - forthcoming - Journal of Symbolic Logic:1-31.
    We obtain an array of consistency results concerning trees and stationary reflection at double successors of regular cardinals $\kappa $, updating some classical constructions in the process. This includes models of $\mathsf {CSR}(\kappa ^{++})\wedge {\sf TP}(\kappa ^{++})$ (both with and without ${\sf AP}(\kappa ^{++})$ ) and models of the conjunctions ${\sf SR}(\kappa ^{++}) \wedge \mathsf {wTP}(\kappa ^{++}) \wedge {\sf AP}(\kappa ^{++})$ and $\neg {\sf AP}(\kappa ^{++}) \wedge {\sf SR}(\kappa ^{++})$ (the latter was originally obtained in joint work by Krueger and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Constructing wadge classes.Raphaël Carroy, Andrea Medini & Sandra Müller - 2022 - Bulletin of Symbolic Logic 28 (2):207-257.
    We show that, assuming the Axiom of Determinacy, every non-selfdual Wadge class can be constructed by starting with those of level $\omega _1$ and iteratively applying the operations of expansion and separated differences. The proof is essentially due to Louveau, and it yields at the same time a new proof of a theorem of Van Wesep. The exposition is self-contained, except for facts from classical descriptive set theory.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Cantor's Abstractionism and Hume's Principle.Claudio Ternullo & Luca Zanetti - 2021 - History and Philosophy of Logic 43 (3):284-300.
    Richard Kimberly Heck and Paolo Mancosu have claimed that the possibility of non-Cantorian assignments of cardinalities to infinite concepts shows that Hume's Principle (HP) is not implicit in the concept of cardinal number. Neologicism would therefore be threatened by the ‘good company' HP is kept by such alternative assignments. In his review of Mancosu's book, Bob Hale argues, however, that ‘getting different numerosities for different countable infinite collections depends on taking the groups in a certain order – but it is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation