Switch to: Citations

Add references

You must login to add references.
  1. The trials of life: Natural selection and random drift.Denis M. Walsh, Andre Ariew & Tim Lewens - 2002 - Philosophy of Science 69 (3):452-473.
    We distinguish dynamical and statistical interpretations of evolutionary theory. We argue that only the statistical interpretation preserves the presumed relation between natural selection and drift. On these grounds we claim that the dynamical conception of evolutionary theory as a theory of forces is mistaken. Selection and drift are not forces. Nor do selection and drift explanations appeal to the (sub-population-level) causes of population level change. Instead they explain by appeal to the statistical structure of populations. We briefly discuss the implications (...)
    Download  
     
    Export citation  
     
    Bookmark   191 citations  
  • Selection, drift, and the “forces” of evolution.Christopher Stephens - 2004 - Philosophy of Science 71 (4):550-570.
    Recently, several philosophers have challenged the view that evolutionary theory is usefully understood by way of an analogy with Newtonian mechanics. Instead, they argue that evolutionary theory is merely a statistical theory. According to this alternate approach, natural selection and random genetic drift are not even causes, much less forces. I argue that, properly understood, the Newtonian analogy is unproblematic and illuminating. I defend the view that selection and drift are causes in part by attending to a pair of important (...)
    Download  
     
    Export citation  
     
    Bookmark   96 citations  
  • Two ways of thinking about fitness and natural selection.Mohan Matthen & André Ariew - 2002 - Journal of Philosophy 99 (2):55-83.
    How do fitness and natural selection relate to other evolutionary factors like architectural constraint, mode of reproduction, and drift? In one way of thinking, drawn from Newtonian dynamics, fitness is one force driving evolutionary change and added to other factors. In another, drawn from statistical thermodynamics, it is a statistical trend that manifests itself in natural selection histories. It is argued that the first model is incoherent, the second appropriate; a hierarchical realization model is proposed as a basis for a (...)
    Download  
     
    Export citation  
     
    Bookmark   197 citations  
  • Are random drift and natural selection conceptually distinct?Roberta L. Millstein - 2002 - Biology and Philosophy 17 (1):33-53.
    The latter half of the twentieth century has been marked by debates in evolutionary biology over the relative significance of natural selection and random drift: the so-called “neutralist/selectionist” debates. Yet John Beatty has argued that it is difficult, if not impossible, to distinguish the concept of random drift from the concept of natural selection, a claim that has been accepted by many philosophers of biology. If this claim is correct, then the neutralist/selectionist debates seem at best futile, and at worst, (...)
    Download  
     
    Export citation  
     
    Bookmark   105 citations  
  • A general account of selection: Biology, immunology, and behavior.David L. Hull, Rodney E. Langman & Sigrid S. Glenn - 2001 - Behavioral and Brain Sciences 24 (3):511-528.
    Authors frequently refer to gene-based selection in biological evolution, the reaction of the immune system to antigens, and operant learning as exemplifying selection processes in the same sense of this term. However, as obvious as this claim may seem on the surface, setting out an account of “selection” that is general enough to incorporate all three of these processes without becoming so general as to be vacuous is far from easy. In this target article, we set out such a general (...)
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • Artifact, cause and genic selection.Elliott Sober & Richard C. Lewontin - 1982 - Philosophy of Science 49 (2):157-180.
    Several evolutionary biologists have used a parsimony argument to argue that the single gene is the unit of selection. Since all evolution by natural selection can be represented in terms of selection coefficients attaching to single genes, it is, they say, "more parsimonious" to think that all selection is selection for or against single genes. We examine the limitations of this genic point of view, and then relate our criticisms to a broader view of the role of causal concepts and (...)
    Download  
     
    Export citation  
     
    Bookmark   132 citations  
  • Selection and causation.Mohan Matthen & André Ariew - 2009 - Philosophy of Science 76 (2):201-224.
    We have argued elsewhere that: (A) Natural selection is not a cause of evolution. (B) A resolution-of-forces (or vector addition) model does not provide us with a proper understanding of how natural selection combines with other evolutionary influences. These propositions have come in for criticism recently, and here we clarify and defend them. We do so within the broad framework of our own “hierarchical realization model” of how evolutionary influences combine.
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • The propensity interpretation of fitness.Susan K. Mills & John H. Beatty - 1979 - Philosophy of Science 46 (2):263-286.
    The concept of "fitness" is a notion of central importance to evolutionary theory. Yet the interpretation of this concept and its role in explanations of evolutionary phenomena have remained obscure. We provide a propensity interpretation of fitness, which we argue captures the intended reference of this term as it is used by evolutionary theorists. Using the propensity interpretation of fitness, we provide a Hempelian reconstruction of explanations of evolutionary phenomena, and we show why charges of circularity which have been levelled (...)
    Download  
     
    Export citation  
     
    Bookmark   205 citations  
  • Conditions for Evolution by Natural Selection.Peter Godfrey-Smith - 2007 - Journal of Philosophy 104 (10):489-516.
    Both biologists and philosophers often make use of simple verbal formulations of necessary and sufficient conditions for evolution by natural selection (ENS). Such summaries go back to Darwin's Origin of Species (especially the "Recapitulation"), but recent ones are more compact.1 Perhaps the most commonly cited formulation is due to Lewontin.2 These summaries tend to have three or four conditions, where the core requirement is a combination of variation, heredity, and fitness differences. The summaries are employed in several ways. First, they (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • At last: Serious consideration.David L. Hull, Rodney E. Langman & Sigrid S. Glenn - 2001 - Behavioral and Brain Sciences 24 (3):559-569.
    For a long time, several natural phenomena have been considered unproblematically selection processes in the same sense of “selection.” In our target article we dealt with three of these phenomena: gene-based selection in biological evolution, the reaction of the immune system to antigens, and operant learning. We characterize selection in terms of three processes (variation, replication, and environmental interaction) resulting in the evolution of lineages via differential replication. Our commentators were largely supportive with respect to variation and environmental interaction but (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • How to understand casual relations in natural selection: Reply to Rosenberg and Bouchard. [REVIEW]Mohan Matthen & André Ariew - 2005 - Biology and Philosophy 20 (2-3):355-364.
    In “Two Ways of Thinking About Fitness and Natural Selection” (Matthen and Ariew [2002]; henceforth “Two Ways”), we asked how one should think of the relationship between the various factors invoked to explain evolutionary change – selection, drift, genetic constraints, and so on. We suggested that these factors are not related to one another as “forces” are in classical mechanics. We think it incoherent, for instance, to think of natural selection and drift as separate and opposed “forces” in evolutionary change (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Chance and natural selection.John Beatty - 1984 - Philosophy of Science 51 (2):183-211.
    Among the liveliest disputes in evolutionary biology today are disputes concerning the role of chance in evolution--more specifically, disputes concerning the relative evolutionary importance of natural selection vs. so-called "random drift". The following discussion is an attempt to sort out some of the broad issues involved in those disputes. In the first half of this paper, I try to explain the differences between evolution by natural selection and evolution by random drift. On some common construals of "natural selection", those two (...)
    Download  
     
    Export citation  
     
    Bookmark   105 citations