Switch to: Citations

Add references

You must login to add references.
  1. The principles of quantum mechanics.Paul Dirac - 1930 - Oxford,: Clarendon Press.
    THE PRINCIPLE OF SUPERPOSITION. The need for a quantum theory Classical mechanics has been developed continuously from the time of Newton and applied to an ...
    Download  
     
    Export citation  
     
    Bookmark   263 citations  
  • Dirac's aether in relativistic quantum mechanics.Nicola Cufaro Petroni & Jean Pierre Vigier - 1983 - Foundations of Physics 13 (2):253-286.
    The introduction by Dirac of a new aether model based on a stochastic covariant distribution of subquantum motions (corresponding to a “vacuum state” alive with fluctuations and randomness) is discussed with respect to the present experimental and theoretical discussion of nonlocality in EPR situations. It is shown (1) that one can deduce the de Broglie waves as real collective Markov processes on the top of Dirac's aether; (2) that the quantum potential associated with this aether's modification, by the presence of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Uncertainty principle and uncertainty relations.J. B. M. Uffink & Jan Hilgevoord - 1985 - Foundations of Physics 15 (9):925–944.
    It is generally believed that the uncertainty relation Δq Δp≥1/2ħ, where Δq and Δp are standard deviations, is the precise mathematical expression of the uncertainty principle for position and momentum in quantum mechanics. We show that actually it is not possible to derive from this relation two central claims of the uncertainty principle, namely, the impossibility of an arbitrarily sharp specification of both position and momentum (as in the single-slit diffraction experiment), and the impossibility of the determination of the path (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Time-energy uncertainty and relativistic canonical commutation relations in quantum spacetime.Eduard Prugovečki - 1982 - Foundations of Physics 12 (6):555-564.
    It is shown that the time operatorQ 0 appearing in the realization of the RCCR's [Qμ,Pv]=−jhgμv, on Minkowski quantum spacetime is a self adjoint operator on Hilbert space of square integrable functions over Σ m =σ×v m , where σ is a timelike hyperplane. This result leads to time-energy uncertainty relations that match their space-momentum counterparts. The operators Qμ appearing in Born's metric operator in quantum spacetime emerge as internal spacetime operators for exciton states, and the condition that the metric (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Resolution of the Klein paradox for spin-1/2 particles.John R. Fanchi - 1981 - Foundations of Physics 11 (5-6):493-498.
    The problem of a relativistic spin-1/2 particle scattering from a step potential is solved within the theoretical framework of relativistic dynamics. This treatment avoids the Klein paradox. An experiment for testing the theory is suggested.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Physical basis for minimal time-energy uncertainty relation.Y. S. Kim & Marilyn E. Noz - 1979 - Foundations of Physics 9 (5-6):375-387.
    A physical basis for the minimal time-energy uncertainty relation is formulated from basic high-energy hadronic properties such as the resonance mass spectrum, the form factor behavior, and the peculiarities of Feynman's parton picture. It is shown that the covariant oscillator formalism combines covariantly this time-energy uncertainty relation with Heisenberg's space-momentum uncertainty relation. A pictorial method is developed to describe the spacetime distribution of the localized probability density.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Tachyon kinematics and causality: A systematic thorough analysis of the tachyon causal paradoxes. [REVIEW]Erasmo Recami - 1987 - Foundations of Physics 17 (3):239-296.
    The chronological order of the events along a spacelike path is not invariant under Lorentz transformations, as is well known. This led to an early conviction that tachyons would give rise to causal anomalies. A relativistic version of the Stückelberg-Feynman “switching procedure” (SWP) has been invoked as the suitable tool to eliminate those anomalies. The application of the SWP does eliminate the motions backwards in time, but interchanges the roles ofsource anddetector. This fact triggered the proposal of a host of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations