Switch to: Citations

Add references

You must login to add references.
  1. Explanation: a mechanist alternative.William Bechtel & Adele Abrahamsen - 2005 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 36 (2):421-441.
    Explanations in the life sciences frequently involve presenting a model of the mechanism taken to be responsible for a given phenomenon. Such explanations depart in numerous ways from nomological explanations commonly presented in philosophy of science. This paper focuses on three sorts of differences. First, scientists who develop mechanistic explanations are not limited to linguistic representations and logical inference; they frequently employ diagrams to characterize mechanisms and simulations to reason about them. Thus, the epistemic resources for presenting mechanistic explanations are (...)
    Download  
     
    Export citation  
     
    Bookmark   562 citations  
  • Reprogramming cell fates: reconciling rarity with robustness.Sui Huang - 2009 - Bioessays 31 (5):546-560.
    The stunning possibility of “reprogramming” differentiated somatic cells to express a pluripotent stem cell phenotype (iPS, induced pluripotent stem cell) and the “ground state” character of pluripotency reveal fundamental features of cell fate regulation that lie beyond existing paradigms. The rarity of reprogramming events appears to contradict the robustness with which the unfathomably complex phenotype of stem cells can reliably be generated. This apparent paradox, however, is naturally explained by the rugged “epigenetic landscape” with valleys representing “preprogrammed” attractor states that (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Social experiments in stem cell biology.Melinda B. Fagan - 2011 - Perspectives on Science 19 (3):235-262.
    Stem cell biology is driven by experiment. Its major achievements are striking experimental productions: "immortal" human cell lines from spare embryos (Thomson et al. 1998); embryo-like cells from "reprogrammed" adult skin cells (Takahashi and Yamanaka 2006); muscle, blood and nerve tissue generated from stem cells in culture (Lanza et al. 2009, and references therein). Well-confirmed theories are not so prominent, though stem cell biologists do propose and test hypotheses at a profligate rate. 1 This paper aims to characterize the role (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The cell: locus or object of inquiry?William Bechtel - 2010 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 41 (3):172-182.
    Research in many fields of biology has been extremely successful in decomposing biological mechanisms to discover their parts and operations. It often remains a significant challenge for scientists to recompose these mechanisms to understand how they function as wholes and interact with the environments around them. This is true of the eukaryotic cell. Although initially identified in nineteenth-century cell theory as the fundamental unit of organisms, researchers soon learned how to decompose it into its organelles and chemical constituents and have (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Crystals, fabrics, and fields: metaphors that shape embryos.Donna Jeanne Haraway - 1976 - Berkeley, Calif.: North Atlantic Books.
    Acclaimed theorist and social scientist Donna Jeanne Haraway uses the work of pioneering developmental biologists Ross G. Harrison, Joseph Needham, and Paul Weiss as a springboard for a discussion about a shift in developmental biology from a vitalism-mechanism framework to organicism. The book deftly interweaves Thomas Kuhn's concept of paradigm change into this wide-ranging analysis, emphasizing the role of model, analogy, and metaphor in the paradigm and arguing that any truly useful theoretical system in biology must have a central metaphor.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • (1 other version)Explaining the brain: mechanisms and the mosaic unity of neuroscience.Carl F. Craver - 2007 - New York : Oxford University Press,: Oxford University Press, Clarendon Press.
    Carl Craver investigates what we are doing when we sue neuroscience to explain what's going on in the brain.
    Download  
     
    Export citation  
     
    Bookmark   624 citations  
  • Thinking about mechanisms.Peter Machamer, Lindley Darden & Carl F. Craver - 2000 - Philosophy of Science 67 (1):1-25.
    The concept of mechanism is analyzed in terms of entities and activities, organized such that they are productive of regular changes. Examples show how mechanisms work in neurobiology and molecular biology. Thinking in terms of mechanisms provides a new framework for addressing many traditional philosophical issues: causality, laws, explanation, reduction, and scientific change.
    Download  
     
    Export citation  
     
    Bookmark   1355 citations  
  • (1 other version)Rethinking mechanistic explanation.Stuart Glennan - 2002 - Proceedings of the Philosophy of Science Association 2002 (3):S342-353.
    Philosophers of science typically associate the causal-mechanical view of scientific explanation with the work of Railton and Salmon. In this paper I shall argue that the defects of this view arise from an inadequate analysis of the concept of mechanism. I contrast Salmon's account of mechanisms in terms of the causal nexus with my own account of mechanisms, in which mechanisms are viewed as complex systems. After describing these two concepts of mechanism, I show how the complex-systems approach avoids certain (...)
    Download  
     
    Export citation  
     
    Bookmark   400 citations  
  • Epigenetic landscaping: Waddington's use of cell fate bifurcation diagrams. [REVIEW]Scott F. Gilbert - 1991 - Biology and Philosophy 6 (2):135-154.
    From the 1930s through the 1970s, C. H. Waddington attempted to reunite genetics, embryology, and evolution. One of the means to effect this synthesis was his model of the epigenetic landscape. This image originally recast genetic data in terms of embryological diagrams and was used to show the identity of genes and inducers and to suggest the similarities between embryological and genetic approaches to development. Later, the image became more complex and integrated gene activity and mutations. These revised epigenetic landscapes (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • (1 other version)Rethinking Mechanistic Explanation.Stuart Glennan - 2002 - Philosophy of Science 69 (S3):S342-S353.
    Philosophers of science typically associate the causal-mechanical view of scientific explanation with the work of Railton and Salmon. In this paper I shall argue that the defects of this view arise from an inadequate analysis of the concept of mechanism. I contrast Salmon's account of mechanisms in terms of the causal nexus with my own account of mechanisms, in which mechanisms are viewed as complex systems. After describing these two concepts of mechanism, I show how the complex-systems approach avoids certain (...)
    Download  
     
    Export citation  
     
    Bookmark   420 citations  
  • Evolution in Four Dimensions: Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life.Eva Jablonka, Marion J. Lamb & Anna Zeligowski - 2005 - Bradford.
    Ideas about heredity and evolution are undergoing a revolutionary change. New findings in molecular biology challenge the gene-centered version of Darwinian theory according to which adaptation occurs only through natural selection of chance DNA variations. In Evolution in Four Dimensions, Eva Jablonka and Marion Lamb argue that there is more to heredity than genes. They trace four "dimensions" in evolution -- four inheritance systems that play a role in evolution: genetic, epigenetic, behavioral, and symbolic. These systems, they argue, can all (...)
    Download  
     
    Export citation  
     
    Bookmark   320 citations  
  • Fundamental issues in systems biology.Maureen A. O'Malley & John Dupré - 2005 - Bioessays 27 (12):1270-1276.
    In the context of scientists' reflections on genomics, we examine some fundamental issues in the emerging postgenomic discipline of systems biology. Systems biology is best understood as consisting of two streams. One, which we shall call ‘pragmatic systems biology’, emphasises large‐scale molecular interactions; the other, which we shall refer to as ‘systems‐theoretic biology’, emphasises system principles. Both are committed to mathematical modelling, and both lack a clear account of what biological systems are. We discuss the underlying issues in identifying systems (...)
    Download  
     
    Export citation  
     
    Bookmark   76 citations  
  • Rethinking Mechanistic Explanation.Lindley Darden - 2002 - Philosophy of Science 69 (S3):342-353.
    Philosophers of science typically associate the causal‐mechanical view of scientific explanation with the work of Railton and Salmon. In this paper I shall argue that the defects of this view arise from an inadequate analysis of the concept of mechanism. I contrast Salmon’s account of mechanisms in terms of the causal nexus with my own account of mechanisms, in which mechanisms are viewed as complex systems. After describing these two concepts of mechanism, I show how the complex‐systems approach avoids certain (...)
    Download  
     
    Export citation  
     
    Bookmark   215 citations  
  • Organisers and Genes.C. H. Waddington - 1941 - Philosophy of Science 8 (3):463-463.
    Download  
     
    Export citation  
     
    Bookmark   72 citations