Switch to: Citations

Add references

You must login to add references.
  1. Projective mad families.Sy-David Friedman & Lyubomyr Zdomskyy - 2010 - Annals of Pure and Applied Logic 161 (12):1581-1587.
    Using almost disjoint coding we prove the consistency of the existence of a definable ω-mad family of infinite subsets of ω together with.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Mad families, splitting families and large continuum.Jörg Brendle & Vera Fischer - 2011 - Journal of Symbolic Logic 76 (1):198 - 208.
    Let κ < λ be regular uncountable cardinals. Using a finite support iteration (in fact a matrix iteration) of ccc posets we obtain the consistency of b = a = κ < s = λ. If μ is a measurable cardinal and μ < κ < λ, then using similar techniques we obtain the consistency of b = κ < a = s = λ.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Long projective wellorderings.Leo Harrington - 1977 - Annals of Mathematical Logic 12 (1):1.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Cardinal characteristics and projective wellorders.Vera Fischer & Sy David Friedman - 2010 - Annals of Pure and Applied Logic 161 (7):916-922.
    Using countable support iterations of S-proper posets, we show that the existence of a definable wellorder of the reals is consistent with each of the following: , and.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • (1 other version)A very absolute Pi-1-2 real singleton.René David - 1982 - Annals of Mathematical Logic 23 (2-3):101-120.
    I give a class forcing that adds a real which is Pi-1-2 and for which no forcing extension (by a set of conditions) can destroy this definability.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • [Omnibus Review].Thomas Jech - 1992 - Journal of Symbolic Logic 57 (1):261-262.
    Reviewed Works:John R. Steel, A. S. Kechris, D. A. Martin, Y. N. Moschovakis, Scales on $\Sigma^1_1$ Sets.Yiannis N. Moschovakis, Scales on Coinductive Sets.Donald A. Martin, John R. Steel, The Extent of Scales in $L$.John R. Steel, Scales in $L$.
    Download  
     
    Export citation  
     
    Bookmark   219 citations