Switch to: References

Citations of:

[Omnibus Review]

Journal of Symbolic Logic 57 (1):261-262 (1992)

Add citations

You must login to add citations.
  1. Fundamentality from grounding trees.Fabrice Correia - 2021 - Synthese 199 (3-4):5965-5994.
    I provide and defend two natural accounts of fundamentality for facts that do justice to the idea that the “degree of fundamentality” enjoyed by a fact is a matter of how far, from a ground-theoretic perspective, the fact is from the ungrounded facts.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Nothing But Gold. Complexities in Terms of Non-difference and Identity: Part 1. Coreferential Puzzles.Alberto Anrò - 2021 - Journal of Indian Philosophy 49 (3):361-386.
    Beginning from some passages by Vācaspati Miśra and Bhāskararāya Makhin discussing the relationship between a crown and the gold of which it is made, this paper investigates the complex underlying connections among difference, non-difference, coreferentiality, and qualification qua relations. Methodologically, philological care is paired with formal logical analysis on the basis of ‘Navya-Nyāya Formal Language’ premises and an axiomatic set theory-based approach. This study is intended as the first step of a broader investigation dedicated to analysing causation and transformation in (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Between Atomism and Superatomism.T. Scott Dixon - 2020 - Journal of Philosophical Logic 49 (6):1215-1241.
    There are at least three vaguely atomistic principles that have come up in the literature, two explicitly and one implicitly. First, standard atomism is the claim that everything is composed of atoms, and is very often how atomism is characterized in the literature. Second, superatomism is the claim that parthood is well-founded, which implies that every proper parthood chain terminates, and has been discussed as a stronger alternative to standard atomism. Third, there is a principle that lies between these two (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Ontological Import of Adding Proper Classes.Alfredo Roque Freire & Rodrigo de Alvarenga Freire - 2019 - Manuscrito 42 (2):85-112.
    In this article, we analyse the ontological import of adding classes to set theories. We assume that this increment is well represented by going from ZF system to NBG. We thus consider the standard techniques of reducing one system to the other. Novak proved that from a model of ZF we can build a model of NBG (and vice versa), while Shoenfield have shown that from a proof in NBG of a set-sentence we can generate a proof in ZF of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Set mapping reflection.Justin Tatch Moore - 2005 - Journal of Mathematical Logic 5 (1):87-97.
    In this note we will discuss a new reflection principle which follows from the Proper Forcing Axiom. The immediate purpose will be to prove that the bounded form of the Proper Forcing Axiom implies both that 2ω = ω2 and that [Formula: see text] satisfies the Axiom of Choice. It will also be demonstrated that this reflection principle implies that □ fails for all regular κ > ω1.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Countable Additivity, Idealization, and Conceptual Realism.Yang Liu - 2020 - Economics and Philosophy 36 (1):127-147.
    This paper addresses the issue of finite versus countable additivity in Bayesian probability and decision theory -- in particular, Savage's theory of subjective expected utility and personal probability. I show that Savage's reason for not requiring countable additivity in his theory is inconclusive. The assessment leads to an analysis of various highly idealised assumptions commonly adopted in Bayesian theory, where I argue that a healthy dose of, what I call, conceptual realism is often helpful in understanding the interpretational value of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Underdetermination of infinitesimal probabilities.Alexander R. Pruss - 2018 - Synthese 198 (1):777-799.
    A number of philosophers have attempted to solve the problem of null-probability possible events in Bayesian epistemology by proposing that there are infinitesimal probabilities. Hájek and Easwaran have argued that because there is no way to specify a particular hyperreal extension of the real numbers, solutions to the regularity problem involving infinitesimals, or at least hyperreal infinitesimals, involve an unsatisfactory ineffability or arbitrariness. The arguments depend on the alleged impossibility of picking out a particular hyperreal extension of the real numbers (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Forcing and the Universe of Sets: Must We Lose Insight?Neil Barton - 2020 - Journal of Philosophical Logic 49 (4):575-612.
    A central area of current philosophical debate in the foundations of mathematics concerns whether or not there is a single, maximal, universe of set theory. Universists maintain that there is such a universe, while Multiversists argue that there are many universes, no one of which is ontologically privileged. Often forcing constructions that add subsets to models are cited as evidence in favour of the latter. This paper informs this debate by analysing ways the Universist might interpret this discourse that seems (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Representation of Functions and Total Antisymmetric Relations in Monadic Third Order Logic.M. Randall Holmes - 2019 - Journal of Philosophical Logic 48 (2):263-278.
    We analyze the representation of binary relations in general, and in particular of functions and of total antisymmetric relations, in monadic third order logic, that is, the simple typed theory of sets with three types. We show that there is no general representation of functions or of total antisymmetric relations in this theory. We present partial representations of functions and of total antisymmetric relations which work for large classes of these relations, and show that there is an adequate representation of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Generalized Löb’s Theorem.Strong Reflection Principles and Large Cardinal Axioms. Consistency Results in Topology.Jaykov Foukzon - 2015 - Pure and Applied Mathematics Journal (Vol. 4, No. 1-1):1-5.
    Download  
     
    Export citation  
     
    Bookmark  
  • Ipotesi del Continuo.Claudio Ternullo - 2017 - Aphex 16.
    L’Ipotesi del Continuo, formulata da Cantor nel 1878, è una delle congetture più note della teoria degli insiemi. Il Problema del Continuo, che ad essa è collegato, fu collocato da Hilbert, nel 1900, fra i principali problemi insoluti della matematica. A seguito della dimostrazione di indipendenza dell’Ipotesi del Continuo dagli assiomi della teoria degli insiemi, lo status attuale del problema è controverso. In anni più recenti, la ricerca di una soluzione del Problema del Continuo è stata anche una delle ragioni (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • God meets Satan’s Apple: the paradox of creation.Rubio Daniel - 2018 - Philosophical Studies 175 (12):2987-3004.
    It is now the majority view amongst philosophers and theologians that any world could have been better. This places the choice of which world to create into an especially challenging class of decision problems: those that are discontinuous in the limit. I argue that combining some weak, plausible norms governing this type of problem with a creator who has the attributes of the god of classical theism results in a paradox: no world is possible. After exploring some ways out of (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Axiomatic Theories of Partial Ground II: Partial Ground and Hierarchies of Typed Truth.Johannes Korbmacher - 2018 - Journal of Philosophical Logic 47 (2):193-226.
    This is part two of a two-part paper in which we develop an axiomatic theory of the relation of partial ground. The main novelty of the paper is the of use of a binary ground predicate rather than an operator to formalize ground. In this part of the paper, we extend the base theory of the first part of the paper with hierarchically typed truth-predicates and principles about the interaction of partial ground and truth. We show that our theory is (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • What Are Structural Properties?†.Johannes Korbmacher & Georg Schiemer - 2018 - Philosophia Mathematica 26 (3):295-323.
    Informally, structural properties of mathematical objects are usually characterized in one of two ways: either as properties expressible purely in terms of the primitive relations of mathematical theories, or as the properties that hold of all structurally similar mathematical objects. We present two formal explications corresponding to these two informal characterizations of structural properties. Based on this, we discuss the relation between the two explications. As will be shown, the two characterizations do not determine the same class of mathematical properties. (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Tarski.Benedict Eastaugh - 2017 - In Alex Malpass & Marianna Antonutti Marfori (eds.), The History of Philosophical and Formal Logic: From Aristotle to Tarski. New York: Bloomsbury Publishing. pp. 293-313.
    Alfred Tarski was one of the greatest logicians of the twentieth century. His influence comes not merely through his own work but from the legion of students who pursued his projects, both in Poland and Berkeley. This chapter focuses on three key areas of Tarski's research, beginning with his groundbreaking studies of the concept of truth. Tarski's work led to the creation of the area of mathematical logic known as model theory and prefigured semantic approaches in the philosophy of language (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Logic in the Tractatus.Max Weiss - 2017 - Review of Symbolic Logic 10 (1):1-50.
    I present a reconstruction of the logical system of the Tractatus, which differs from classical logic in two ways. It includes an account of Wittgenstein’s “form-series” device, which suffices to express some effectively generated countably infinite disjunctions. And its attendant notion of structure is relativized to the fixed underlying universe of what is named. -/- There follow three results. First, the class of concepts definable in the system is closed under finitary induction. Second, if the universe of objects is countably (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Deontic logic as a study of conditions of rationality in norm-related activities.Berislav Žarnić - 2016 - In Olivier Roy, Allard Tamminga & Malte Willer (eds.), Deontic Logic and Normative Systems. London, UK: College Publications. pp. 272-287.
    The program put forward in von Wright's last works defines deontic logic as ``a study of conditions which must be satisfied in rational norm-giving activity'' and thus introduces the perspective of logical pragmatics. In this paper a formal explication for von Wright's program is proposed within the framework of set-theoretic approach and extended to a two-sets model which allows for the separate treatment of obligation-norms and permission norms. The three translation functions connecting the language of deontic logic with the language (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Social Pragmatic View on the Concept of Normative Consistency.Berislav Žarnić - 2015 - European Journal of Analytic Philosophy 11 (2):56--78.
    The programmatic statement put forward in von Wright's last works on deontic logic introduces the perspective of logical pragmatics, which has been formally explicated here and extended so to include the role of norm-recipient as well as the role of norm-giver. Using the translation function from the language of deontic logic to the language of set-theoretical approach, the connection has been established between the deontic postulates, on one side, and the perfection properties of the norm-set and the counter-set, on the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Ortega y Gasset on Georg Cantor’s Theory of Transfinite Numbers.Lior Rabi - 2016 - Kairos (15):46-70.
    Ortega y Gasset is known for his philosophy of life and his effort to propose an alternative to both realism and idealism. The goal of this article is to focus on an unfamiliar aspect of his thought. The focus will be given to Ortega’s interpretation of the advancements in modern mathematics in general and Cantor’s theory of transfinite numbers in particular. The main argument is that Ortega acknowledged the historical importance of the Cantor’s Set Theory, analyzed it and articulated a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Relevant first-order logic LP# and Curry’s paradox resolution.Jaykov Foukzon - 2015 - Pure and Applied Mathematics Journal Volume 4, Issue 1-1, January 2015 DOI: 10.11648/J.Pamj.S.2015040101.12.
    In 1942 Haskell B. Curry presented what is now called Curry's paradox which can be found in a logic independently of its stand on negation. In recent years there has been a revitalised interest in non-classical solutions to the semantic paradoxes. In this article the non-classical resolution of Curry’s Paradox and Shaw-Kwei' sparadox without rejection any contraction postulate is proposed. In additional relevant paraconsistent logic C ̌_n^#,1≤n<ω, in fact,provide an effective way of circumventing triviality of da Costa’s paraconsistent Set Theories〖NF〗n^C.
    Download  
     
    Export citation  
     
    Bookmark  
  • Logically Simple Properties and Relations.Jan Plate - 2016 - Philosophers' Imprint 16:1-40.
    This paper presents an account of what it is for a property or relation (or ‘attribute’ for short) to be logically simple. Based on this account, it is shown, among other things, that the logically simple attributes are in at least one important way sparse. This in turn lends support to the view that the concept of a logically simple attribute can be regarded as a promising substitute for Lewis’s concept of a perfectly natural attribute. At least in part, the (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Richness and Reflection.Neil Barton - 2016 - Philosophia Mathematica 24 (3):330-359.
    A pervasive thought in contemporary philosophy of mathematics is that in order to justify reflection principles, one must hold universism: the view that there is a single universe of pure sets. I challenge this kind of reasoning by contrasting universism with a Zermelian form of multiversism. I argue that if extant justifications of reflection principles using notions of richness are acceptable for the universist, then the Zermelian can use similar justifications. However, I note that for some forms of richness argument, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The distribution of ITRM-recognizable reals.Merlin Carl - 2014 - Annals of Pure and Applied Logic 165 (9):1403-1417.
    Infinite Time Register Machines are a well-established machine model for infinitary computations. Their computational strength relative to oracles is understood, see e.g. , and . We consider the notion of recognizability, which was first formulated for Infinite Time Turing Machines in [6] and applied to ITRM 's in [3]. A real x is ITRM -recognizable iff there is an ITRM -program P such that PyPy stops with output 1 iff y=xy=x, and otherwise stops with output 0. In [3], it is (...))
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Omitting types for infinitary [ 0, 1 ] -valued logic.Christopher J. Eagle - 2014 - Annals of Pure and Applied Logic 165 (3):913-932.
    We describe an infinitary logic for metric structures which is analogous to Lω1,ω. We show that this logic is capable of expressing several concepts from analysis that cannot be expressed in finitary continuous logic. Using topological methods, we prove an omitting types theorem for countable fragments of our infinitary logic. We use omitting types to prove a two-cardinal theorem, which yields a strengthening of a result of Ben Yaacov and Iovino concerning separable quotients of Banach spaces.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Antinomicity and the axiom of choice. A chapter in antinomic mathematics.Florencio G. Asenjo - 1996 - Logic and Logical Philosophy 4:53-95.
    The present work is an attempt to break ground in mathematics proper, armed with the accepting view just described. Specifically, we shall examine various versions of antinomic set theory, in particular the axiom of choice, keeping the presentation as intuitive as possible, more in the manner of a nineteenth century paper than as a thoroughly formalized system. The reason for such a presentation is the conviction that at this point it should be the mathematics that eventually determines the logic, rather (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Indestructibility, instances of strong compactness, and level by level inequivalence.Arthur W. Apter - 2010 - Archive for Mathematical Logic 49 (7-8):725-741.
    Suppose λ > κ is measurable. We show that if κ is either indestructibly supercompact or indestructibly strong, then A = {δ < κ | δ is measurable, yet δ is neither δ + strongly compact nor a limit of measurable cardinals} must be unbounded in κ. The large cardinal hypothesis on λ is necessary, as we further demonstrate by constructing via forcing two models in which ${A = \emptyset}$ . The first of these contains a supercompact cardinal κ and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On almost precipitous ideals.Asaf Ferber & Moti Gitik - 2010 - Archive for Mathematical Logic 49 (3):301-328.
    With less than 0# two generic extensions ofL are identified: one in which ${\aleph_1}$ , and the other ${\aleph_2}$ , is almost precipitous. This improves the consistency strength upper bound of almost precipitousness obtained in Gitik M, Magidor M (On partialy wellfounded generic ultrapowers, in Pillars of Computer Science, 2010), and answers some questions raised there. Also, main results of Gitik (On normal precipitous ideals, 2010), are generalized—assumptions on precipitousness are replaced by those on ∞-semi precipitousness. As an application it (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Projective wellorders and mad families with large continuum.Vera Fischer, Sy David Friedman & Lyubomyr Zdomskyy - 2011 - Annals of Pure and Applied Logic 162 (11):853-862.
    We show that is consistent with the existence of a -definable wellorder of the reals and a -definable ω-mad subfamily of [ω]ω.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Indestructibility of Vopěnka’s Principle.Andrew D. Brooke-Taylor - 2011 - Archive for Mathematical Logic 50 (5-6):515-529.
    Vopěnka’s Principle is a natural large cardinal axiom that has recently found applications in category theory and algebraic topology. We show that Vopěnka’s Principle and Vopěnka cardinals are relatively consistent with a broad range of other principles known to be independent of standard (ZFC) set theory, such as the Generalised Continuum Hypothesis, and the existence of a definable well-order on the universe of all sets. We achieve this by showing that they are indestructible under a broad class of forcing constructions, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On some questions concerning strong compactness.Arthur W. Apter - 2012 - Archive for Mathematical Logic 51 (7-8):819-829.
    A question of Woodin asks if κ is strongly compact and GCH holds below κ, then must GCH hold everywhere? One variant of this question asks if κ is strongly compact and GCH fails at every regular cardinal δ < κ, then must GCH fail at some regular cardinal δ ≥ κ? Another variant asks if it is possible for GCH to fail at every limit cardinal less than or equal to a strongly compact cardinal κ. We get a negative (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Approachability at the Second Successor of a Singular Cardinal.Moti Gitik & John Krueger - 2009 - Journal of Symbolic Logic 74 (4):1211 - 1224.
    We prove that if μ is a regular cardinal and ℙ is a μ-centered forcing poset, then ℙ forces that $(I[\mu ^{ + + } ])^V $ generates I[µ⁺⁺] modulo clubs. Using this result, we construct models in which the approachability property fails at the successor of a singular cardinal. We also construct models in which the properties of being internally club and internally approachable are distinct for sets of size the successor of a singular cardinal.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Ramsey-like cardinals.Victoria Gitman - 2011 - Journal of Symbolic Logic 76 (2):519 - 540.
    One of the numerous characterizations of a Ramsey cardinal κ involves the existence of certain types of elementary embeddings for transitive sets of size κ satisfying a large fragment of ZFC. We introduce new large cardinal axioms generalizing the Ramsey elementary embeddings characterization and show that they form a natural hierarchy between weakly compact cardinals and measurable cardinals. These new axioms serve to further our knowledge about the elementary embedding properties of smaller large cardinals, in particular those still consistent with (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • A taste of set theory for philosophers.Jouko Väänänen - 2011 - Journal of the Indian Council of Philosophical Research (2):143-163.
    Download  
     
    Export citation  
     
    Bookmark  
  • Pointwise definable models of set theory.Joel David Hamkins, David Linetsky & Jonas Reitz - 2013 - Journal of Symbolic Logic 78 (1):139-156.
    A pointwise definable model is one in which every object is \loos definable without parameters. In a model of set theory, this property strengthens $V=\HOD$, but is not first-order expressible. Nevertheless, if \ZFC\ is consistent, then there are continuum many pointwise definable models of \ZFC. If there is a transitive model of \ZFC, then there are continuum many pointwise definable transitive models of \ZFC. What is more, every countable model of \ZFC\ has a class forcing extension that is pointwise definable. (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Bounding by canonical functions, with ch.Paul Larson & Saharon Shelah - 2003 - Journal of Mathematical Logic 3 (02):193-215.
    We show that the members of a certain class of semi-proper iterations do not add countable sets of ordinals. As a result, starting from suitable large cardinals one can obtain a model in which the Continuum Hypothesis holds and every function from ω1 to ω1 is bounded on a club by a canonical function for an ordinal less than ω2.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Abstraction in Fitch's Basic Logic.Eric Thomas Updike - 2012 - History and Philosophy of Logic 33 (3):215-243.
    Fitch's basic logic is an untyped illative combinatory logic with unrestricted principles of abstraction effecting a type collapse between properties (or concepts) and individual elements of an abstract syntax. Fitch does not work axiomatically and the abstraction operation is not a primitive feature of the inductive clauses defining the logic. Fitch's proof that basic logic has unlimited abstraction is not clear and his proof contains a number of errors that have so far gone undetected. This paper corrects these errors and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Consistency of strictly impredicative NF and a little more ….Sergei Tupailo - 2010 - Journal of Symbolic Logic 75 (4):1326-1338.
    An instance of Stratified Comprehension ∀x₁ … ∀x n ∃y∀x (x ∈ y ↔ φ(x, x₁, …, x n )) is called strictly impredicative iff, under minimal stratification, the type of x is 0. Using the technology of forcing, we prove that the fragment of NF based on strictly impredicative Stratified Comprehension is consistent. A crucial part in this proof, namely showing genericity of a certain symmetric filter, is due to Robert Solovay. As a bonus, our interpretation also satisfies some (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Nonconstructive Properties of Well-Ordered T 2 topological Spaces.Kyriakos Keremedis & Eleftherios Tachtsis - 1999 - Notre Dame Journal of Formal Logic 40 (4):548-553.
    We show that none of the following statements is provable in Zermelo-Fraenkel set theory (ZF) answering the corresponding open questions from Brunner in ``The axiom of choice in topology'':(i) For every T2 topological space (X, T) if X is well-ordered, then X has a well-ordered base,(ii) For every T2 topological space (X, T), if X is well-ordered, then there exists a function f : X × W T such that W is a well-ordered set and f ({x} × W) is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Issues in the foundations of science, I: Languages, structures, and models.Newton C. A. da Costa, Décio Krause & Otávio Bueno - unknown
    In this first paper of a series of works on the foundations of science, we examine the significance of logical and mathematical frameworks used in foundational studies. In particular, we emphasize the distinction between the order of a language and the order of a structure to prevent confusing models of scientific theories with first-order structures, and which are studied in standard model theory. All of us are, of course, bound to make abuses of language even in putatively precise contexts. This (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Proofs of the Compactness Theorem.Alexander Paseau - 2010 - History and Philosophy of Logic 31 (1):73-98.
    In this study, several proofs of the compactness theorem for propositional logic with countably many atomic sentences are compared. Thereby some steps are taken towards a systematic philosophical study of the compactness theorem. In addition, some related data and morals for the theory of mathematical explanation are presented.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Identity, indiscernibility, and philosophical claims.Décio Krause & Antonio Mariano Nogueira Coelho - 2005 - Axiomathes 15 (2):191-210.
    The concept of indiscernibility in a structure is analysed with the aim of emphasizing that in asserting that two objects are indiscernible, it is useful to consider these objects as members of (the domain of) a structure. A case for this usefulness is presented by examining the consequences of this view to the philosophical discussion on identity and indiscernibility in quantum theory.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Possible behaviours of the reflection ordering of stationary sets.Jiří Witzany - 1995 - Journal of Symbolic Logic 60 (2):534-547.
    If S, T are stationary subsets of a regular uncountable cardinal κ, we say that S reflects fully in $T, S , if for almost all α ∈ T (except a nonstationary set) S ∩ α is stationary in α. This relation is known to be a well-founded partial ordering. We say that a given poset P is realized by the reflection ordering if there is a maximal antichain $\langle X_p; p \in P\rangle$ of stationary subsets of $\operatorname{Reg}(\kappa)$ so that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A special class of almost disjoint families.Thomas E. Leathrum - 1995 - Journal of Symbolic Logic 60 (3):879-891.
    The collection of branches (maximal linearly ordered sets of nodes) of the tree $^{ (ordered by inclusion) forms an almost disjoint family (of sets of nodes). This family is not maximal--for example, any level of the tree is almost disjoint from all of the branches. How many sets must be added to the family of branches to make it maximal? This question leads to a series of definitions and results: a set of nodes is off-branch if it is almost disjoint (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Fat sets and saturated ideals.John Krueger - 2003 - Journal of Symbolic Logic 68 (3):837-845.
    We strengthen a theorem of Gitik and Shelah [6] by showing that if κ is either weakly inaccessible or the successor of a singular cardinal and S is a stationary subset of κ such that $NS_{\kappa} \upharpoonright S$ is saturated then $\kappa \S$ is fat. Using this theorem we derive some results about the existence of fat stationary sets. We then strengthen some results due to Baumgartner and Taylor [2], showing in particular that if I is a $\lambda^{+++}-saturated$ normal ideal (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The mathematical development of set theory from Cantor to Cohen.Akihiro Kanamori - 1996 - Bulletin of Symbolic Logic 2 (1):1-71.
    Set theory is an autonomous and sophisticated field of mathematics, enormously successful not only at its continuing development of its historical heritage but also at analyzing mathematical propositions cast in set-theoretic terms and gauging their consistency strength. But set theory is also distinguished by having begun intertwined with pronounced metaphysical attitudes, and these have even been regarded as crucial by some of its great developers. This has encouraged the exaggeration of crises in foundations and of metaphysical doctrines in general. However, (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • (1 other version)A basis theorem for perfect sets.Marcia J. Groszek & Theodore A. Slaman - 1998 - Bulletin of Symbolic Logic 4 (2):204-209.
    We show that if there is a nonconstructible real, then every perfect set has a nonconstructible element, answering a question of K. Prikry. This is a specific instance of a more general theorem giving a sufficient condition on a pair $M\subset N$ of models of set theory implying that every perfect set in N has an element in N which is not in M.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Mathematics of Skolem's Paradox.Timothy Bays - 2002 - In Dale Jacquette (ed.), Philosophy of Logic. Malden, Mass.: North Holland. pp. 615--648.
    Over the years, Skolem’s Paradox has generated a fairly steady stream of philosophical discussion; nonetheless, the overwhelming consensus among philosophers and logicians is that the paradox doesn’t constitute a mathematical problem (i.e., it doesn’t constitute a real contradiction). Further, there’s general agreement as to why the paradox doesn’t constitute a mathematical problem. By looking at the way firstorder structures interpret quantifiers—and, in particular, by looking at how this interpretation changes as we move from structure to structure—we can give a technically (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mental representation.Hartry Field - 1978 - Erkenntnis 13 (July):9-61.
    Download  
     
    Export citation  
     
    Bookmark   285 citations  
  • The Banach-Tarski Paradox.Ulrich Meyer - 2023 - Logique Et Analyse 261:41–53.
    Emile Borel regards the Banach-Tarski Paradox as a reductio ad absurdum of the Axiom of Choice. Peter Forrest instead blames the assumption that physical space has a similar structure as the real numbers. This paper argues that Banach and Tarski's result is not paradoxical and that it merely illustrates a surprising feature of the continuum: dividing a spatial region into disjoint pieces need not preserve volume.
    Download  
     
    Export citation  
     
    Bookmark  
  • Expanding the notion of inconsistency in mathematics: the theoretical foundations of mutual inconsistency.Carolin Antos - forthcoming - From Contradiction to Defectiveness to Pluralism in Science: Philosophical and Formal Analyses.
    Download  
     
    Export citation  
     
    Bookmark