Switch to: Citations

Add references

You must login to add references.
  1. Degree spectra and computable dimensions in algebraic structures.Denis R. Hirschfeldt, Bakhadyr Khoussainov, Richard A. Shore & Arkadii M. Slinko - 2002 - Annals of Pure and Applied Logic 115 (1-3):71-113.
    Whenever a structure with a particularly interesting computability-theoretic property is found, it is natural to ask whether similar examples can be found within well-known classes of algebraic structures, such as groups, rings, lattices, and so forth. One way to give positive answers to this question is to adapt the original proof to the new setting. However, this can be an unnecessary duplication of effort, and lacks generality. Another method is to code the original structure into a structure in the given (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Degrees of Categoricity and the Hyperarithmetic Hierarchy.Barbara F. Csima, Johanna N. Y. Franklin & Richard A. Shore - 2013 - Notre Dame Journal of Formal Logic 54 (2):215-231.
    We study arithmetic and hyperarithmetic degrees of categoricity. We extend a result of E. Fokina, I. Kalimullin, and R. Miller to show that for every computable ordinal $\alpha$, $\mathbf{0}^{}$ is the degree of categoricity of some computable structure $\mathcal{A}$. We show additionally that for $\alpha$ a computable successor ordinal, every degree $2$-c.e. in and above $\mathbf{0}^{}$ is a degree of categoricity. We further prove that every degree of categoricity is hyperarithmetic and show that the index set of structures with degrees (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Degrees of categoricity of computable structures.Ekaterina B. Fokina, Iskander Kalimullin & Russell Miller - 2010 - Archive for Mathematical Logic 49 (1):51-67.
    Defining the degree of categoricity of a computable structure ${\mathcal{M}}$ to be the least degree d for which ${\mathcal{M}}$ is d-computably categorical, we investigate which Turing degrees can be realized as degrees of categoricity. We show that for all n, degrees d.c.e. in and above 0 (n) can be so realized, as can the degree 0 (ω).
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Degrees That Are Not Degrees of Categoricity.Bernard Anderson & Barbara Csima - 2016 - Notre Dame Journal of Formal Logic 57 (3):389-398.
    A computable structure $\mathcal {A}$ is $\mathbf {x}$-computably categorical for some Turing degree $\mathbf {x}$ if for every computable structure $\mathcal {B}\cong\mathcal {A}$ there is an isomorphism $f:\mathcal {B}\to\mathcal {A}$ with $f\leq_{T}\mathbf {x}$. A degree $\mathbf {x}$ is a degree of categoricity if there is a computable structure $\mathcal {A}$ such that $\mathcal {A}$ is $\mathbf {x}$-computably categorical, and for all $\mathbf {y}$, if $\mathcal {A}$ is $\mathbf {y}$-computably categorical, then $\mathbf {x}\leq_{T}\mathbf {y}$. We construct a $\Sigma^{0}_{2}$ set whose degree (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Degrees of structures.Linda Jean Richter - 1981 - Journal of Symbolic Logic 46 (4):723-731.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • d-computable Categoricity for Algebraic Fields.Russell Miller - 2009 - Journal of Symbolic Logic 74 (4):1325 - 1351.
    We use the Low Basis Theorem of Jockusch and Soare to show that all computable algebraic fields are d-computably categorical for a particular Turing degree d with d' = θ", but that not all such fields are 0'-computably categorical. We also prove related results about algebraic fields with splitting algorithms, and fields of finite transcendence degree over ℚ.
    Download  
     
    Export citation  
     
    Bookmark   9 citations