Switch to: Citations

Add references

You must login to add references.
  1. $t$-convexity And Tame Extensions.Lou van den Dries & Adam H. Lewenberg - 1995 - Journal of Symbolic Logic 60 (1):74-102.
    Let $T$ be a complete o-minimal extension of the theory of real closed fields. We characterize the convex hulls of elementary substructures of models of $T$ and show that the residue field of such a convex hull has a natural expansion to a model of $T$. We give a quantifier elimination relative to $T$ for the theory of pairs $$ where $\mathscr{R} \models T$ and $V \neq \mathscr{R}$ is the convex hull of an elementary substructure of $\mathscr{R}$. We deduce that (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Dimension of definable sets, algebraic boundedness and Henselian fields.Lou Van den Dries - 1989 - Annals of Pure and Applied Logic 45 (2):189-209.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Cell decomposition and dimension function in the theory of closed ordered differential fields.Thomas Brihaye, Christian Michaux & Cédric Rivière - 2009 - Annals of Pure and Applied Logic 159 (1-2):111-128.
    In this paper we develop a differential analogue of o-minimal cell decomposition for the theory CODF of closed ordered differential fields. Thanks to this differential cell decomposition we define a well-behaving dimension function on the class of definable sets in CODF. We conclude this paper by proving that this dimension is closely related to both the usual differential transcendence degree and the topological dimension associated, in this case, with a natural differential topology on ordered differential fields.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Expansions which introduce no new open sets.Gareth Boxall & Philipp Hieronymi - 2012 - Journal of Symbolic Logic 77 (1):111 - 121.
    We consider the question of when an expansion of a first-order topological structure has the property that every open set definable in the expansion is definable in the original structure. This question has been investigated by Dolich, Miller and Steinhorn in the setting of ordered structures as part of their work on the property of having o-minimal open core. We answer the question in a fairly general setting and provide conditions which in practice are often easy to check. We give (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Expansions which introduce no new open sets.Gareth Boxall & Philipp Hieromyni - 2012 - Journal of Symbolic Logic 77 (1):111-121.
    We consider the question of when an expansion of a first-order topological structure has the property that every open set definable in the expansion is definable in the original structure. This question has been investigated by Dolich, Miller and Steinhorn in the setting of ordered structures as part of their work on the property of having o-minimal open core. We answer the question in a fairly general setting and provide conditions which in practice are often easy to check. We give (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The model theory of ordered differential fields.Michael F. Singer - 1978 - Journal of Symbolic Logic 43 (1):82-91.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • T-Convexity and Tame Extensions.Dries Lou Van Den & H. Lewenberg Adam - 1995 - Journal of Symbolic Logic 60 (1):74 - 102.
    Let T be a complete o-minimal extension of the theory of real closed fields. We characterize the convex hulls of elementary substructures of models of T and show that the residue field of such a convex hull has a natural expansion to a model of T. We give a quantifier elimination relative to T for the theory of pairs (R, V) where $\mathscr{R} \models T$ and V ≠ R is the convex hull of an elementary substructure of R. We deduce (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Dimensions, matroids, and dense pairs of first-order structures.Antongiulio Fornasiero - 2011 - Annals of Pure and Applied Logic 162 (7):514-543.
    A structure M is pregeometric if the algebraic closure is a pregeometry in all structures elementarily equivalent to M. We define a generalisation: structures with an existential matroid. The main examples are superstable groups of Lascar U-rank a power of ω and d-minimal expansion of fields. Ultraproducts of pregeometric structures expanding an integral domain, while not pregeometric in general, do have a unique existential matroid. Generalising previous results by van den Dries, we define dense elementary pairs of structures expanding an (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The model theory of differential fields with finitely many commuting derivations.Tracey Mcgrail - 2000 - Journal of Symbolic Logic 65 (2):885-913.
    In this paper we set out the basic model theory of differential fields of characteristic 0, which have finitely many commuting derivations. We give axioms for the theory of differentially closed differential fields with m derivations and show that this theory is ω-stable, model complete, and quantifier-eliminable, and that it admits elimination of imaginaries. We give a characterization of forking and compute the rank of this theory to be ω m + 1.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Distal and non-distal NIP theories.Pierre Simon - 2013 - Annals of Pure and Applied Logic 164 (3):294-318.
    We study one way in which stable phenomena can exist in an NIP theory. We start by defining a notion of ‘pure instability’ that we call ‘distality’ in which no such phenomenon occurs. O-minimal theories and the p-adics for example are distal. Next, we try to understand what happens when distality fails. Given a type p over a sufficiently saturated model, we extract, in some sense, the stable part of p and define a notion of stable independence which is implied (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Distal and non-distal pairs.Philipp Hieronymi & Travis Nell - 2017 - Journal of Symbolic Logic 82 (1):375-383.
    The aim of this note is to determine whether certain non-o-minimal expansions of o-minimal theories which are known to be NIP, are also distal. We observe that while tame pairs of o-minimal structures and the real field with a discrete multiplicative subgroup have distal theories, dense pairs of o-minimal structures and related examples do not.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Strong density of definable types and closed ordered differential fields.Quentin Brouette, Pablo Cubides Kovacsics & Françoise Point - 2019 - Journal of Symbolic Logic 84 (3):1099-1117.
    The following strong form of density of definable types is introduced for theoriesTadmitting a fibered dimension functiond: given a modelMofTand a definable setX⊆Mn, there is a definable typepinX, definable over a code forXand of the samed-dimension asX. Both o-minimal theories and the theory of closed ordered differential fields are shown to have this property. As an application, we derive a new proof of elimination of imaginaries for CODF.
    Download  
     
    Export citation  
     
    Bookmark   3 citations