Switch to: Citations

Add references

You must login to add references.
  1. Dependence and Independence.Erich Grädel & Jouko Väänänen - 2013 - Studia Logica 101 (2):399-410.
    We introduce an atomic formula ${\vec{y} \bot_{\vec{x}}\vec{z}}$ intuitively saying that the variables ${\vec{y}}$ are independent from the variables ${\vec{z}}$ if the variables ${\vec{x}}$ are kept constant. We contrast this with dependence logic ${\mathcal{D}}$ based on the atomic formula = ${(\vec{x}, \vec{y})}$ , actually equivalent to ${\vec{y} \bot_{\vec{x}}\vec{y}}$ , saying that the variables ${\vec{y}}$ are totally determined by the variables ${\vec{x}}$ . We show that ${\vec{y} \bot_{\vec{x}}\vec{z}}$ gives rise to a natural logic capable of formalizing basic intuitions about independence and dependence. (...)
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • On definability in dependence logic.Juha Kontinen & Jouko Väänänen - 2009 - Journal of Logic, Language and Information 18 (3):317-332.
    We study the expressive power of open formulas of dependence logic introduced in Väänänen [Dependence logic (Vol. 70 of London Mathematical Society Student Texts), 2007]. In particular, we answer a question raised by Wilfrid Hodges: how to characterize the sets of teams definable by means of identity only in dependence logic, or equivalently in independence friendly logic.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Expressing Second-order Sentences in Intuitionistic Dependence Logic.Fan Yang - 2013 - Studia Logica 101 (2):323-342.
    Intuitionistic dependence logic was introduced by Abramsky and Väänänen [1] as a variant of dependence logic under a general construction of Hodges’ (trump) team semantics. It was proven that there is a translation from intuitionistic dependence logic sentences into second order logic sentences. In this paper, we prove that the other direction is also true, therefore intuitionistic dependence logic is equivalent to second order logic on the level of sentences.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (2 other versions)On a generalization of quantifiers.Andrzej Mostowski - 1957 - Fundamenta Mathematicae 44 (2):12--36.
    Download  
     
    Export citation  
     
    Bookmark   170 citations  
  • First order predicate logic with generalized quantifiers.Per Lindström - 1966 - Theoria 32 (3):186--195.
    Download  
     
    Export citation  
     
    Bookmark   182 citations  
  • Compositional semantics for a language of imperfect information.W. Hodges - 1997 - Logic Journal of the IGPL 5 (4):539-563.
    We describe a logic which is the same as first-order logic except that it allows control over the information that passes down from formulas to subformulas. For example the logic is adequate to express branching quantifiers. We describe a compositional semantics for this logic; in particular this gives a compositional meaning to formulas of the 'information-friendly' language of Hintikka and Sandu. For first-order formulas the semantics reduces to Tarski's semantics for first-order logic. We prove that two formulas have the same (...)
    Download  
     
    Export citation  
     
    Bookmark   140 citations  
  • Independence friendly logic.Tero Tulenheimo - 2010 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   8 citations