Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Generalized quantifiers and natural language.John Barwise & Robin Cooper - 1981 - Linguistics and Philosophy 4 (2):159--219.
    Download  
     
    Export citation  
     
    Bookmark   632 citations  
  • Shadows of Syntax: Revitalizing Logical and Mathematical Conventionalism.Jared Warren - 2020 - New York, USA: Oxford University Press.
    What is the source of logical and mathematical truth? This book revitalizes conventionalism as an answer to this question. Conventionalism takes logical and mathematical truth to have their source in linguistic conventions. This was an extremely popular view in the early 20th century, but it was never worked out in detail and is now almost universally rejected in mainstream philosophical circles. Shadows of Syntax is the first book-length treatment and defense of a combined conventionalist theory of logic and mathematics. It (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • The Bounds of Logic: A Generalized Viewpoint.Gila Sher - 1991 - MIT Press.
    The Bounds of Logic presents a new philosophical theory of the scope and nature of logic based on critical analysis of the principles underlying modern Tarskian logic and inspired by mathematical and linguistic development. Extracting central philosophical ideas from Tarski’s early work in semantics, Sher questions whether these are fully realized by the standard first-order system. The answer lays the foundation for a new, broader conception of logic. By generally characterizing logical terms, Sher establishes a fundamental result in semantics. Her (...)
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • On Extensions of Elementary Logic.Per Lindström - 1969 - Theoria 35 (1):1-11.
    Download  
     
    Export citation  
     
    Bookmark   112 citations  
  • Invariance as a basis for necessity and laws.Gila Sher - 2021 - Philosophical Studies 178 (12):3945-3974.
    Many philosophers are baffled by necessity. Humeans, in particular, are deeply disturbed by the idea of necessary laws of nature. In this paper I offer a systematic yet down to earth explanation of necessity and laws in terms of invariance. The type of invariance I employ for this purpose generalizes an invariance used in meta-logic. The main idea is that properties and relations in general have certain degrees of invariance, and some properties/relations have a stronger degree of invariance than others. (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Did Tarski commit "Tarski's fallacy"?Gila Sher - 1996 - Journal of Symbolic Logic 61 (2):653-686.
    In his 1936 paper,On the Concept of Logical Consequence, Tarski introduced the celebrated definition oflogical consequence: “The sentenceσfollows logicallyfrom the sentences of the class Γ if and only if every model of the class Γ is also a model of the sentenceσ.” [55, p. 417] This definition, Tarski said, is based on two very basic intuitions, “essential for the proper concept of consequence” [55, p. 415] and reflecting common linguistic usage: “Consider any class Γ of sentences and a sentence which (...)
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • Inclusion and exclusion dependencies in team semantics—on some logics of imperfect information.Pietro Galliani - 2012 - Annals of Pure and Applied Logic 163 (1):68-84.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Logic, Logics, and Logicism.Solomon Feferman - 1999 - Notre Dame Journal of Formal Logic 40 (1):31-54.
    The paper starts with an examination and critique of Tarski’s wellknown proposed explication of the notion of logical operation in the type structure over a given domain of individuals as one which is invariant with respect to arbitrary permutations of the domain. The class of such operations has been characterized by McGee as exactly those definable in the language L∞,∞. Also characterized similarly is a natural generalization of Tarski’s thesis, due to Sher, in terms of bijections between domains. My main (...)
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • Learnability and Semantic Universals.Shane Steinert-Threlkeld & Jakub Szymanik - forthcoming - Semantics and Pragmatics.
    One of the great successes of the application of generalized quantifiers to natural language has been the ability to formulate robust semantic universals. When such a universal is attested, the question arises as to the source of the universal. In this paper, we explore the hypothesis that many semantic universals arise because expressions satisfying the universal are easier to learn than those that do not. While the idea that learnability explains universals is not new, explicit accounts of learning that can (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • On the possibility of a substantive theory of truth.Gila Sher - 1998 - Synthese 117 (1):133-172.
    The paper offers a new analysis of the difficulties involved in the construction of a general and substantive correspondence theory of truth and delineates a solution to these difficulties in the form of a new methodology. The central argument is inspired by Kant, and the proposed methodology is explained and justified both in general philosophical terms and by reference to a particular variant of Tarski's theory. The paper begins with general considerations on truth and correspondence and concludes with a brief (...)
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • On Logical Relativity.Achille C. Varzi - 2002 - Philosophical Issues 12 (1):197-219.
    One logic or many? I say—many. Or rather, I say there is one logic for each way of specifying the class of all possible circumstances, or models, i.e., all ways of interpreting a given language. But because there is no unique way of doing this, I say there is no unique logic except in a relative sense. Indeed, given any two competing logical theories T1 and T2 (in the same language) one could always consider their common core, T, and settle (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Logical constants in quantifier languages.Dag Westerståhl - 1985 - Linguistics and Philosophy 8 (4):387 - 413.
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Axioms for abstract model theory.K. Jon Barwise - 1974 - Annals of Mathematical Logic 7 (2-3):221-265.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Complex demonstratives.Josh Dever - 2001 - Linguistics and Philosophy 24 (3):271-330.
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Did Tarski commit “Tarski's fallacy”?G. Y. Sher - 1996 - Journal of Symbolic Logic 61 (2):653-686.
    In his 1936 paper,On the Concept of Logical Consequence, Tarski introduced the celebrated definition oflogical consequence: “The sentenceσfollows logicallyfrom the sentences of the class Γ if and only if every model of the class Γ is also a model of the sentenceσ.” [55, p. 417] This definition, Tarski said, is based on two very basic intuitions, “essential for the proper concept of consequence” [55, p. 415] and reflecting common linguistic usage: “Consider any class Γ of sentences and a sentence which (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Polyadic Quantifiers.Johan Van Benthem - 1989 - Linguistics and Philosophy 12 (4):437-464.
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Ways of branching quantifers.Gila Sher - 1990 - Linguistics and Philosophy 13 (4):393 - 422.
    Branching quantifiers were first introduced by L. Henkin in his 1959 paper ‘Some Remarks on Infmitely Long Formulas’. By ‘branching quantifiers’ Henkin meant a new, non-linearly structured quantiiier-prefix whose discovery was triggered by the problem of interpreting infinitistic formulas of a certain form} The branching (or partially-ordered) quantifier-prefix is, however, not essentially infinitistic, and the issues it raises have largely been discussed in the literature in the context of finitistic logic, as they will be here. Our discussion transcends, however, the (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Logical Indefinites.Jack Woods - 2014 - Logique Et Analyse -- Special Issue Edited by Julien Murzi and Massimiliano Carrara 227: 277-307.
    I argue that we can and should extend Tarski's model-theoretic criterion of logicality to cover indefinite expressions like Hilbert's ɛ operator, Russell's indefinite description operator η, and abstraction operators like 'the number of'. I draw on this extension to discuss the logical status of both abstraction operators and abstraction principles.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Set-theoretical Invariance Criteria for Logicality.Solomon Feferman - 2010 - Notre Dame Journal of Formal Logic 51 (1):3-20.
    This is a survey of work on set-theoretical invariance criteria for logicality. It begins with a review of the Tarski-Sher thesis in terms, first, of permutation invariance over a given domain and then of isomorphism invariance across domains, both characterized by McGee in terms of definability in the language L∞,∞. It continues with a review of critiques of the Tarski-Sher thesis, and a proposal in response to one of those critiques via homomorphism invariance. That has quite divergent characterization results depending (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Interpreting logical form.Robert May - 1989 - Linguistics and Philosophy 12 (4):387 - 435.
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Modal Ontology and Generalized Quantifiers.Peter Fritz - 2013 - Journal of Philosophical Logic 42 (4):643-678.
    Timothy Williamson has argued that in the debate on modal ontology, the familiar distinction between actualism and possibilism should be replaced by a distinction between positions he calls contingentism and necessitism. He has also argued in favor of necessitism, using results on quantified modal logic with plurally interpreted second-order quantifiers showing that necessitists can draw distinctions contingentists cannot draw. Some of these results are similar to well-known results on the relative expressivity of quantified modal logics with so-called inner and outer (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The foundational problem of logic.Gila Sher - 2013 - Bulletin of Symbolic Logic 19 (2):145-198.
    The construction of a systematic philosophical foundation for logic is a notoriously difficult problem. In Part One I suggest that the problem is in large part methodological, having to do with the common philosophical conception of “providing a foundation”. I offer an alternative to the common methodology which combines a strong foundational requirement with the use of non-traditional, holistic tools to achieve this result. In Part Two I delineate an outline of a foundation for logic, employing the new methodology. The (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Tarski's thesis.Gila Sher - 2008 - In Douglas Patterson (ed.), New essays on Tarski and philosophy. New York: Oxford University Press. pp. 300--339.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • (1 other version)Absolute logics and L∞ω.K. Jon Barwise - 1972 - Annals of Mathematical Logic 4 (3):309-340.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • The formal-structural view of logical consequence.Gila Sher - 2001 - Philosophical Review 110 (2):241-261.
    In a recent paper, “The Concept of Logical Consequence,” W. H. Hanson criticizes a formal-structural characterization of logical consequence in Tarski and Sher. Hanson accepts many principles of the formal-structural view. Relating to Sher 1991 and 1996a, he says.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Logicality and model classes.Juliette Kennedy & Jouko Väänänen - 2021 - Bulletin of Symbolic Logic 27 (4):385-414.
    We ask, when is a property of a model a logical property? According to the so-called Tarski–Sher criterion this is the case when the property is preserved by isomorphisms. We relate this to model-theoretic characteristics of abstract logics in which the model class is definable. This results in a graded concept of logicality in the terminology of Sagi [46]. We investigate which characteristics of logics, such as variants of the Löwenheim–Skolem theorem, Completeness theorem, and absoluteness, are relevant from the logicality (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • What is Logical Form?Ernest Lepore & Kirk Ludwig - 2002 - In Gerhard Preyer & Georg Peter (eds.), Logical Form and Language. Oxford, England: Oxford University Press. pp. 54-90.
    Bertrand Russell, in the second of his 1914 Lowell lectures, Our Knowledge of the External World, asserted famously that ‘every philosophical problem, when it is subjected to the necessary analysis and purification, is found either to be not really philosophical at all, or else to be, in the sense in which we are using the word, logical’ (Russell 1993, p. 42). He went on to characterize that portion of logic that concerned the study of forms of propositions, or, as he (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Polyadic quantifiers.Johan Benthem - 1989 - Linguistics and Philosophy 12 (4):437 - 464.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • On the general interpretation of first-order quantifiers.G. Aldo Antonelli - 2013 - Review of Symbolic Logic 6 (4):637-658.
    While second-order quantifiers have long been known to admit nonstandard, or interpretations, first-order quantifiers (when properly viewed as predicates of predicates) also allow a kind of interpretation that does not presuppose the full power-set of that interpretationgeneral” interpretations for (unary) first-order quantifiers in a general setting, emphasizing the effects of imposing various further constraints that the interpretation is to satisfy.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Generalized quantifiers and pebble games on finite structures.Phokion G. Kolaitis & Jouko A. Väänänen - 1995 - Annals of Pure and Applied Logic 74 (1):23-75.
    First-order logic is known to have a severely limited expressive power on finite structures. As a result, several different extensions have been investigated, including fragments of second-order logic, fixpoint logic, and the infinitary logic L∞ωω in which every formula has only a finite number of variables. In this paper, we study generalized quantifiers in the realm of finite structures and combine them with the infinitary logic L∞ωω to obtain the logics L∞ωω, where Q = {Qi: iε I} is a family (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Inner models from extended logics: Part 1.Juliette Kennedy, Menachem Magidor & Jouko Väänänen - 2020 - Journal of Mathematical Logic 21 (2):2150012.
    If we replace first-order logic by second-order logic in the original definition of Gödel’s inner model L, we obtain the inner model of hereditarily ordinal definable sets [33]. In this paper...
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Semantic bounds for everyday language.Marcin Mostowski & Jakub Szymanik - 2012 - Semiotica 2012 (188):363-372.
    We consider the notion of everyday language. We claim that everyday language is semantically bounded by the properties expressible in the existential fragment of second–order logic. Two arguments for this thesis are formulated. Firstly, we show that so–called Barwise's test of negation normality works properly only when assuming our main thesis. Secondly, we discuss the argument from practical computability for finite universes. Everyday language sentences are directly or indirectly verifiable. We show that in both cases they are bounded by second–order (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Definability hierarchies of general quantifiers.Lauri Hella - 1989 - Annals of Pure and Applied Logic 43 (3):235.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Generalized Quantifiers in Dependence Logic.Fredrik Engström - 2012 - Journal of Logic, Language and Information 21 (3):299-324.
    We introduce generalized quantifiers, as defined in Tarskian semantics by Mostowski and Lindström, in logics whose semantics is based on teams instead of assignments, e.g., IF-logic and Dependence logic. Both the monotone and the non-monotone case is considered. It is argued that to handle quantifier scope dependencies of generalized quantifiers in a satisfying way the dependence atom in Dependence logic is not well suited and that the multivalued dependence atom is a better choice. This atom is in fact definably equivalent (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Restriction by Noncontraction.Elia Zardini - 2016 - Notre Dame Journal of Formal Logic 57 (2):287-327.
    This paper investigates how naive theories of truth fare with respect to a set of extremely plausible principles of restricted quantification. It is first shown that both nonsubstructural theories as well as certain substructural theories cannot validate all those principles. Then, pursuing further an approach to the semantic paradoxes that the author has defended elsewhere, the theory of restricted quantification available in a specific naive theory that rejects the structural property of contraction is explored. It is shown that the theory (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Computational Complexity of Polyadic Lifts of Generalized Quantifiers in Natural Language.Jakub Szymanik - 2010 - Linguistics and Philosophy 33 (3):215-250.
    We study the computational complexity of polyadic quantifiers in natural language. This type of quantification is widely used in formal semantics to model the meaning of multi-quantifier sentences. First, we show that the standard constructions that turn simple determiners into complex quantifiers, namely Boolean operations, iteration, cumulation, and resumption, are tractable. Then, we provide an insight into branching operation yielding intractable natural language multi-quantifier expressions. Next, we focus on a linguistic case study. We use computational complexity results to investigate semantic (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Names.Sam Cumming - 2009 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Generalized quantifiers.Dag Westerståhl - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Which Quantifiers Are Logical?Solomon Feferman - unknown
    ✤ It is the characterization of those forms of reasoning that lead invariably from true sentences to true sentences, independently of the subject matter.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Oppositions and opposites.Fabien Schang - 2012 - In Jean-Yves Béziau & Dale Jacquette (eds.), Around and Beyond the Square of Opposition. New York: Springer Verlag. pp. 147--173.
    A formal theory of oppositions and opposites is proposed on the basis of a non- Fregean semantics, where opposites are negation-forming operators that shed some new light on the connection between opposition and negation. The paper proceeds as follows. After recalling the historical background, oppositions and opposites are compared from a mathematical perspective: the first occurs as a relation, the second as a function. Then the main point of the paper appears with a calculus of oppositions, by means of a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A Double Team Semantics for Generalized Quantifiers.Antti Kuusisto - 2015 - Journal of Logic, Language and Information 24 (2):149-191.
    We investigate extensions of dependence logic with generalized quantifiers. We also introduce and investigate the notion of a generalized atom. We define a system of semantics that can accommodate variants of dependence logic, possibly extended with generalized quantifiers and generalized atoms, under the same umbrella framework. The semantics is based on pairs of teams, or double teams. We also devise a game-theoretic semantics equivalent to the double team semantics. We make use of the double team semantics by defining a logic (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Distributivity, Collectivity, and Cumulativity in Terms of (In)dependence and Maximality.Livio Robaldo - 2011 - Journal of Logic, Language and Information 20 (2):233-271.
    This article proposes a new logical framework for NL quantification. The framework is based on Generalized Quantifiers, Skolem-like functional dependencies, and Maximality of the involved sets of entities. Among the readings available for NL sentences, those where two or more sets of entities are independent of one another are particularly challenging. In the literature, examples of those readings are known as Collective and Cumulative readings. This article briefly analyzes previous approaches to Cumulativity and Collectivity, and indicates (Schwarzschild in Pluralities. Kluwer, (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • John Buridan’s Theory of Consequence and His Octagons of Opposition.Stephen Read - 2012 - In Jean-Yves Béziau & Dale Jacquette (eds.), Around and Beyond the Square of Opposition. New York: Springer Verlag. pp. 93--110.
    One of the manuscripts of Buridan’s Summulae contains three figures, each in the form of an octagon. At each node of each octagon there are nine propositions. Buridan uses the figures to illustrate his doctrine of the syllogism, revising Aristotle's theory of the modal syllogism and adding theories of syllogisms with propositions containing oblique terms (such as ‘man’s donkey’) and with ‘propositions of non-normal construction’ (where the predicate precedes the copula). O-propositions of non-normal construction (i.e., ‘Some S (some) P is (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Categories of First-Order Quantifiers.Urszula Wybraniec-Skardowska - 2018 - In Urszula Wybraniec-Skardowska & Ángel Garrido (eds.), The Lvov-Warsaw School. Past and Present. Cham, Switzerland: Springer- Birkhauser,. pp. 575-597.
    One well known problem regarding quantifiers, in particular the 1storder quantifiers, is connected with their syntactic categories and denotations. The unsatisfactory efforts to establish the syntactic and ontological categories of quantifiers in formalized first-order languages can be solved by means of the so called principle of categorial compatibility formulated by Roman Suszko, referring to some innovative ideas of Gottlob Frege and visible in syntactic and semantic compatibility of language expressions. In the paper the principle is introduced for categorial languages generated (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quantifiers and Quantification.Gabriel Uzquiano - 2014 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (2 other versions)A Characterization of Logical Constants Is Possible.Gila Sher - 2010 - Theoria: Revista de Teoría, Historia y Fundamentos de la Ciencia 18 (2):189-198.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The härtig quantifier: A survey.Heinrich Herre, Michał Krynicki, Alexandr Pinus & Jouko Väänänen - 1991 - Journal of Symbolic Logic 56 (4):1153-1183.
    A fundamental notion in a large part of mathematics is the notion of equicardinality. The language with Hartig quantifier is, roughly speaking, a first-order language in which the notion of equicardinality is expressible. Thus this language, denoted by LI, is in some sense very natural and has in consequence special interest. Properties of LI are studied in many papers. In [BF, Chapter VI] there is a short survey of some known results about LI. We feel that a more extensive exposition (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Major Parts of Speech.Zoltán Gendler Szabó - 2015 - Erkenntnis 80 (1):3-29.
    According to the contemporary consensus, when reaching in the lexicon grammar looks for items like nouns, verbs, and prepositions while logic sees items like predicates, connectives, and quantifiers. In fact, there doesn’t seem to be a single lexical category contemporary grammar and logic both make use of. I hope to show that while a perfect match between the lexical categories of grammar and logic is impossible there can be a substantial overlap. I propose semantic definitions for all the major parts (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (2 other versions)A characterization of logical constants is possible.Gila Sher - 2003 - Theoria 18 (2):189-198.
    The paper argues that a philosophically informative and mathematically precise characterization is possible by (i) describing a particular proposal for such a characterization, (ii) showing that certain criticisms of this proposal are incorrect, and (iii) discussing the general issue of what a characterization of logical constants aims at achieving.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The Square of Opposition and Generalized Quantifiers.Duilio D'Alfonso - 2012 - In Jean-Yves Béziau & Dale Jacquette (eds.), Around and Beyond the Square of Opposition. New York: Springer Verlag. pp. 219--227.
    In this paper I propose a set-theoretical interpretation of the logical square of opposition, in the perspective opened by generalized quantifier theory. Generalized quantifiers allow us to account for the semantics of quantificational Noun Phrases, and of other natural language expressions, in a coherent and uniform way. I suggest that in the analysis of the meaning of Noun Phrases and Determiners the square of opposition may help representing some semantic features responsible to different logical properties of these expressions. I will (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations