Switch to: Citations

Add references

You must login to add references.
  1. A jump inversion theorem for the enumeration jump.I. N. Soskov - 2000 - Archive for Mathematical Logic 39 (6):417-437.
    . We prove a jump inversion theorem for the enumeration jump and a minimal pair type theorem for the enumeration reducibilty. As an application some results of Selman, Case and Ash are obtained.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • How Enumeration Reducibility Yields Extended Harrington Non-Splitting.Mariya I. Soskova & S. Barry Cooper - 2008 - Journal of Symbolic Logic 73 (2):634 - 655.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Partial degrees and the density problem. Part 2: The enumeration degrees of the ∑2 sets are dense.S. B. Cooper - 1984 - Journal of Symbolic Logic 49 (2):503 - 513.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Then-rea enumeration degrees are dense.Alistair H. Lachlan & Richard A. Shore - 1992 - Archive for Mathematical Logic 31 (4):277-285.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Jumps of quasi-minimal enumeration degrees.Kevin McEvoy - 1985 - Journal of Symbolic Logic 50 (3):839-848.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Definability of the jump operator in the enumeration degrees.I. Sh Kalimullin - 2003 - Journal of Mathematical Logic 3 (02):257-267.
    We show that the e-degree 0'e and the map u ↦ u' are definable in the upper semilattice of all e-degrees. The class of total e-degrees ≥0'e is also definable.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • (1 other version)Arithmetical Reducibilities I.Alan L. Selman - 1971 - Mathematical Logic Quarterly 17 (1):335-350.
    Download  
     
    Export citation  
     
    Bookmark   15 citations