Switch to: References

Add citations

You must login to add citations.
  1. Relationships between computability-theoretic properties of problems.Rod Downey, Noam Greenberg, Matthew Harrison-Trainor, Ludovic Patey & Dan Turetsky - 2022 - Journal of Symbolic Logic 87 (1):47-71.
    A problem is a multivalued function from a set of instances to a set of solutions. We consider only instances and solutions coded by sets of integers. A problem admits preservation of some computability-theoretic weakness property if every computable instance of the problem admits a solution relative to which the property holds. For example, cone avoidance is the ability, given a noncomputable set A and a computable instance of a problem ${\mathsf {P}}$, to find a solution relative to which A (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Relatively computably enumerable reals.Bernard A. Anderson - 2011 - Archive for Mathematical Logic 50 (3-4):361-365.
    A real X is defined to be relatively c.e. if there is a real Y such that X is c.e.(Y) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X \not\leq_T Y}$$\end{document}. A real X is relatively simple and above if there is a real Y (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Regular enumerations.I. N. Soskov & V. Baleva - 2002 - Journal of Symbolic Logic 67 (4):1323-1343.
    In the paper we introduce and study regular enumerations for arbitrary recursive ordinals. Several applications of the technique are presented.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)A structural dichotomy in the enumeration degrees.Hristo A. Ganchev, Iskander Sh Kalimullin, Joseph S. Miller & Mariya I. Soskova - 2022 - Journal of Symbolic Logic 87 (2):527-544.
    We give several new characterizations of the continuous enumeration degrees. The main one proves that an enumeration degree is continuous if and only if it is not half of a nontrivial relativized $\mathcal {K}$ -pair. This leads to a structural dichotomy in the enumeration degrees.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Density of the cototal enumeration degrees.Joseph S. Miller & Mariya I. Soskova - 2018 - Annals of Pure and Applied Logic 169 (5):450-462.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Measuring complexities of classes of structures.Barbara F. Csima & Carolyn Knoll - 2015 - Annals of Pure and Applied Logic 166 (12):1365-1381.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The jump operator on the ω-enumeration degrees.Hristo Ganchev & Ivan N. Soskov - 2009 - Annals of Pure and Applied Logic 160 (3):289-301.
    The jump operator on the ω-enumeration degrees was introduced in [I.N. Soskov, The ω-enumeration degrees, J. Logic Computat. 17 1193–1214]. In the present paper we prove a jump inversion theorem which allows us to show that the enumeration degrees are first order definable in the structure of the ω-enumeration degrees augmented by the jump operator. Further on we show that the groups of the automorphisms of and of the enumeration degrees are isomorphic. In the second part of the paper we (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On Nondeterminism, Enumeration Reducibility and Polynomial Bounds.Kate Copestake - 1997 - Mathematical Logic Quarterly 43 (3):287-310.
    Enumeration reducibility is a notion of relative computability between sets of natural numbers where only positive information about the sets is used or produced. Extending e‐reducibility to partial functions characterises relative computability between partial functions. We define a polynomial time enumeration reducibility that retains the character of enumeration reducibility and show that it is equivalent to conjunctive non‐deterministic polynomial time reducibility. We define the polynomial time e‐degrees as the equivalence classes under this reducibility and investigate their structure on the recursive (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)A structural dichotomy in the enumeration degrees.Hristo A. Ganchev, Iskander Sh Kalimullin, Joseph S. Miller & Mariya I. Soskova - 2020 - Journal of Symbolic Logic:1-18.
    We give several new characterizations of the continuous enumeration degrees. The main one proves that an enumeration degree is continuous if and only if it is not half a nontrivial relativized K-pair. This leads to a structural dichotomy in the enumeration degrees.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Pa Relative to an Enumeration Oracle.G. O. H. Jun Le, Iskander Sh Kalimullin, Joseph S. Miller & Mariya I. Soskova - 2023 - Journal of Symbolic Logic 88 (4):1497-1525.
    Recall that B is PA relative to A if B computes a member of every nonempty $\Pi ^0_1(A)$ class. This two-place relation is invariant under Turing equivalence and so can be thought of as a binary relation on Turing degrees. Miller and Soskova [23] introduced the notion of a $\Pi ^0_1$ class relative to an enumeration oracle A, which they called a $\Pi ^0_1{\left \langle {A}\right \rangle }$ class. We study the induced extension of the relation B is PA relative (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Generalizations of enumeration reducibility using recursive infinitary propositional sentences.C. J. Ash - 1992 - Annals of Pure and Applied Logic 58 (3):173-184.
    Ash, C.J., Generalizations of enumeration reducibility using recursive infinitary propositional sentences, Annals of Pure and Applied Logic 58 173–184. We consider the relation between sets A and B that for every set S if A is Σ0α in S then B is Σ0β in S. We show that this is equivalent to the condition that B is definable from A in a particular way involving recursive infinitary propositional sentences. When α = β = 1, this condition is that B is (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Coding and Definability in Computable Structures.Antonio Montalbán - 2018 - Notre Dame Journal of Formal Logic 59 (3):285-306.
    These are the lecture notes from a 10-hour course that the author gave at the University of Notre Dame in September 2010. The objective of the course was to introduce some basic concepts in computable structure theory and develop the background needed to understand the author’s research on back-and-forth relations.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Degrees of Unsolvability of Continuous Functions.Joseph S. Miller - 2004 - Journal of Symbolic Logic 69 (2):555 - 584.
    We show that the Turing degrees are not sufficient to measure the complexity of continuous functions on [0, 1]. Computability of continuous real functions is a standard notion from computable analysis. However, no satisfactory theory of degrees of continuous functions exists. We introduce the continuous degrees and prove that they are a proper extension of the Turing degrees and a proper substructure of the enumeration degrees. Call continuous degrees which are not Turing degrees non-total. Several fundamental results are proved: a (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Strong minimal pairs in the enumeration degrees.Josiah Jacobsen-Grocott - 2024 - Annals of Pure and Applied Logic 175 (10):103464.
    Download  
     
    Export citation  
     
    Bookmark  
  • The jump operation for structure degrees.V. Baleva - 2005 - Archive for Mathematical Logic 45 (3):249-265.
    One of the main problems in effective model theory is to find an appropriate information complexity measure of the algebraic structures in the sense of computability. Unlike the commonly used degrees of structures, the structure degree measure is total. We introduce and study the jump operation for structure degrees. We prove that it has all natural jump properties (including jump inversion theorem, theorem of Ash), which show that our definition is relevant. We study the relation between the structure degree jump (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations