Switch to: Citations

Add references

You must login to add references.
  1. Forcing with Sequences of Models of Two Types.Itay Neeman - 2014 - Notre Dame Journal of Formal Logic 55 (2):265-298.
    We present an approach to forcing with finite sequences of models that uses models of two types. This approach builds on earlier work of Friedman and Mitchell on forcing to add clubs in cardinals larger than $\aleph_{1}$, with finite conditions. We use the two-type approach to give a new proof of the consistency of the proper forcing axiom. The new proof uses a finite support forcing, as opposed to the countable support iteration in the standard proof. The distinction is important (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Aronszajn trees and the independence of the transfer property.William Mitchell - 1972 - Annals of Mathematical Logic 5 (1):21.
    Download  
     
    Export citation  
     
    Bookmark   94 citations  
  • Strongly adequate sets and adding a club with finite conditions.John Krueger - 2014 - Archive for Mathematical Logic 53 (1-2):119-136.
    We continue the study of adequate sets which we began in (Krueger in Forcing with adequate sets of models as side conditions) by introducing the idea of a strongly adequate set, which has an additional requirement on the overlap of two models past their comparison point. We present a forcing poset for adding a club to a fat stationary subset of ω 2 with finite conditions, thereby showing that a version of the forcing posets of Friedman (Set theory: Centre de (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Forcing with adequate sets of models as side conditions.John Krueger - 2017 - Mathematical Logic Quarterly 63 (1-2):124-149.
    We present a general framework for forcing on ω2 with finite conditions using countable models as side conditions. This framework is based on a method of comparing countable models as being membership related up to a large initial segment. We give several examples of this type of forcing, including adding a function on ω2, adding a nonreflecting stationary subset of, and adding an ω1‐Kurepa tree.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Coherent adequate forcing and preserving CH.John Krueger & Miguel Angel Mota - 2015 - Journal of Mathematical Logic 15 (2):1550005.
    We develop a general framework for forcing with coherent adequate sets on [Formula: see text] as side conditions, where [Formula: see text] is a cardinal of uncountable cofinality. We describe a class of forcing posets which we call coherent adequate type forcings. The main theorem of the paper is that any coherent adequate type forcing preserves CH. We show that there exists a forcing poset for adding a club subset of [Formula: see text] with finite conditions while preserving CH, solving (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Adding a club with finite conditions, Part II.John Krueger - 2015 - Archive for Mathematical Logic 54 (1-2):161-172.
    We define a forcing poset which adds a club subset of a given fat stationary set S⊆ω2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S \subseteq \omega_2}$$\end{document} with finite conditions, using S-adequate sets of models as side conditions. This construction, together with the general amalgamation results concerning S-adequate sets on which it is based, is substantially shorter and simpler than our original version in Krueger :119–136, 2014).
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Quotients of strongly proper forcings and guessing models.Sean Cox & John Krueger - 2016 - Journal of Symbolic Logic 81 (1):264-283.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On splitting stationary subsets of large cardinals.James E. Baumgartner, Alan D. Taylor & Stanley Wagon - 1977 - Journal of Symbolic Logic 42 (2):203-214.
    Let κ denote a regular uncountable cardinal and NS the normal ideal of nonstationary subsets of κ. Our results concern the well-known open question whether NS fails to be κ + -saturated, i.e., are there κ + stationary subsets of κ with pairwise intersections nonstationary? Our first observation is: Theorem. NS is κ + -saturated iff for every normal ideal J on κ there is a stationary set $A \subseteq \kappa$ such that $J = NS \mid A = \{X \subseteq (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Reflecting stationary sets and successors of singular cardinals.Saharon Shelah - 1991 - Archive for Mathematical Logic 31 (1):25-53.
    REF is the statement that every stationary subset of a cardinal reflects, unless it fails to do so for a trivial reason. The main theorem, presented in Sect. 0, is that under suitable assumptions it is consistent that REF and there is a κ which is κ+n -supercompact. The main concepts defined in Sect. 1 are PT, which is a certain statement about the existence of transversals, and the “bad” stationary set. It is shown that supercompactness (and even the failure (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations