Switch to: Citations

Add references

You must login to add references.
  1. Homogeneous changes in cofinalities with applications to HOD.Omer Ben-Neria & Spencer Unger - 2017 - Journal of Mathematical Logic 17 (2):1750007.
    We present a new technique for changing the cofinality of large cardinals using homogeneous forcing. As an application we show that many singular cardinals in [Formula: see text] can be measurable in HOD. We also answer a related question of Cummings, Friedman and Golshani by producing a model in which every regular uncountable cardinal [Formula: see text] in [Formula: see text] is [Formula: see text]-supercompact in HOD.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Supercompact extender based Magidor–Radin forcing.Carmi Merimovich - 2017 - Annals of Pure and Applied Logic 168 (8):1571-1587.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Collapsing the cardinals of HOD.James Cummings, Sy David Friedman & Mohammad Golshani - 2015 - Journal of Mathematical Logic 15 (2):1550007.
    Assuming that GCH holds and [Formula: see text] is [Formula: see text]-supercompact, we construct a generic extension [Formula: see text] of [Formula: see text] in which [Formula: see text] remains strongly inaccessible and [Formula: see text] for every infinite cardinal [Formula: see text]. In particular the rank-initial segment [Formula: see text] is a model of ZFC in which [Formula: see text] for every infinite cardinal [Formula: see text].
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Supercompact extender based Prikry forcing.Carmi Merimovich - 2011 - Archive for Mathematical Logic 50 (5-6):591-602.
    The extender based Prikry forcing notion is being generalized to super compact extenders.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Suitable extender models I.W. Hugh Woodin - 2010 - Journal of Mathematical Logic 10 (1):101-339.
    We investigate both iteration hypotheses and extender models at the level of one supercompact cardinal. The HOD Conjecture is introduced and shown to be a key conjecture both for the Inner Model Program and for understanding the limits of the large cardinal hierarchy. We show that if the HOD Conjecture is true then this provides strong evidence for the existence of an ultimate version of Gödel's constructible universe L. Whether or not this "ultimate" L exists is now arguably the central (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Homogeneous iteration and measure one covering relative to HOD.Natasha Dobrinen & Sy-David Friedman - 2008 - Archive for Mathematical Logic 47 (7-8):711-718.
    Relative to a hyperstrong cardinal, it is consistent that measure one covering fails relative to HOD. In fact it is consistent that there is a superstrong cardinal and for every regular cardinal κ, κ + is greater than κ + of HOD. The proof uses a very general lemma showing that homogeneity is preserved through certain reverse Easton iterations.
    Download  
     
    Export citation  
     
    Bookmark   11 citations