Switch to: References

Add citations

You must login to add citations.
  1. Equivalence of generics.Iian B. Smythe - 2022 - Archive for Mathematical Logic 61 (5):795-812.
    Given a countable transitive model of set theory and a partial order contained in it, there is a natural countable Borel equivalence relation on generic filters over the model; two are equivalent if they yield the same generic extension. We examine the complexity of this equivalence relation for various partial orders, focusing on Cohen and random forcing. We prove, among other results, that the former is an increasing union of countably many hyperfinite Borel equivalence relations, and hence is amenable, while (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Ultrahuge cardinals.Konstantinos Tsaprounis - 2016 - Mathematical Logic Quarterly 62 (1-2):77-87.
    In this note, we start with the notion of a superhuge cardinal and strengthen it by requiring that the elementary embeddings witnessing this property are, in addition, sufficiently superstrong above their target. This modification leads to a new large cardinal which we call ultrahuge. Subsequently, we study the placement of ultrahugeness in the usual large cardinal hierarchy, while at the same time show that some standard techniques apply nicely in the context of ultrahuge cardinals as well.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Large cardinals and gap-1 morasses.Andrew D. Brooke-Taylor & Sy-David Friedman - 2009 - Annals of Pure and Applied Logic 159 (1-2):71-99.
    We present a new partial order for directly forcing morasses to exist that enjoys a significant homogeneity property. We then use this forcing in a reverse Easton iteration to obtain an extension universe with morasses at every regular uncountable cardinal, while preserving all n-superstrong , hyperstrong and 1-extendible cardinals. In the latter case, a preliminary forcing to make the GCH hold is required. Our forcing yields morasses that satisfy an extra property related to the homogeneity of the partial order; we (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Homogeneous changes in cofinalities with applications to HOD.Omer Ben-Neria & Spencer Unger - 2017 - Journal of Mathematical Logic 17 (2):1750007.
    We present a new technique for changing the cofinality of large cardinals using homogeneous forcing. As an application we show that many singular cardinals in [Formula: see text] can be measurable in HOD. We also answer a related question of Cummings, Friedman and Golshani by producing a model in which every regular uncountable cardinal [Formula: see text] in [Formula: see text] is [Formula: see text]-supercompact in HOD.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Some applications of supercompact extender based forcings to hod.Moti Gitik & Carmi Merimovich - 2018 - Journal of Symbolic Logic 83 (2):461-476.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Combinatorial properties and dependent choice in symmetric extensions based on Lévy collapse.Amitayu Banerjee - 2022 - Archive for Mathematical Logic 62 (3):369-399.
    We work with symmetric extensions based on Lévy collapse and extend a few results of Apter, Cody, and Koepke. We prove a conjecture of Dimitriou from her Ph.D. thesis. We also observe that if V is a model of $$\textsf {ZFC}$$ ZFC, then $$\textsf {DC}_{<\kappa }$$ DC < κ can be preserved in the symmetric extension of V in terms of symmetric system $$\langle {\mathbb {P}},{\mathcal {G}},{\mathcal {F}}\rangle $$ ⟨ P, G, F ⟩, if $${\mathbb {P}}$$ P is $$\kappa $$ (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • More on the Preservation of Large Cardinals Under Class Forcing.Joan Bagaria & Alejandro Poveda - 2023 - Journal of Symbolic Logic 88 (1):290-323.
    We prove two general results about the preservation of extendible and $C^{(n)}$ -extendible cardinals under a wide class of forcing iterations (Theorems 5.4 and 7.5). As applications we give new proofs of the preservation of Vopěnka’s Principle and $C^{(n)}$ -extendible cardinals under Jensen’s iteration for forcing the GCH [17], previously obtained in [8, 27], respectively. We prove that $C^{(n)}$ -extendible cardinals are preserved by forcing with standard Easton-support iterations for any possible $\Delta _2$ -definable behaviour of the power-set function on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • More on HOD-supercompactness.Arthur W. Apter, Shoshana Friedman & Gunter Fuchs - 2021 - Annals of Pure and Applied Logic 172 (3):102901.
    We explore Woodin's Universality Theorem and consider to what extent large cardinal properties are transferred into HOD (and other inner models). We also separate the concepts of supercompactness, supercompactness in HOD and being HOD-supercompact. For example, we produce a model where a proper class of supercompact cardinals are not HOD-supercompact but are supercompact in HOD. Additionally we introduce a way to measure the degree of HOD-supercompactness of a supercompact cardinal, and we develop methods to control these degrees simultaneously for a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On extendible cardinals and the GCH.Konstantinos Tsaprounis - 2013 - Archive for Mathematical Logic 52 (5-6):593-602.
    We give a characterization of extendibility in terms of embeddings between the structures H λ . By that means, we show that the GCH can be forced (by a class forcing) while preserving extendible cardinals. As a corollary, we argue that such cardinals cannot in general be made indestructible by (set) forcing, under a wide variety of forcing notions.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Collapsing the cardinals of HOD.James Cummings, Sy David Friedman & Mohammad Golshani - 2015 - Journal of Mathematical Logic 15 (2):1550007.
    Assuming that GCH holds and [Formula: see text] is [Formula: see text]-supercompact, we construct a generic extension [Formula: see text] of [Formula: see text] in which [Formula: see text] remains strongly inaccessible and [Formula: see text] for every infinite cardinal [Formula: see text]. In particular the rank-initial segment [Formula: see text] is a model of ZFC in which [Formula: see text] for every infinite cardinal [Formula: see text].
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Easton’s theorem in the presence of Woodin cardinals.Brent Cody - 2013 - Archive for Mathematical Logic 52 (5-6):569-591.
    Under the assumption that δ is a Woodin cardinal and GCH holds, I show that if F is any class function from the regular cardinals to the cardinals such that (1) ${\kappa < {\rm cf}(F(\kappa))}$ , (2) ${\kappa < \lambda}$ implies ${F(\kappa) \leq F(\lambda)}$ , and (3) δ is closed under F, then there is a cofinality-preserving forcing extension in which 2 γ = F(γ) for each regular cardinal γ < δ, and in which δ remains Woodin. Unlike the analogous (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations