Switch to: Citations

Add references

You must login to add references.
  1. Coherent systems of finite support iterations.Vera Fischer, Sy D. Friedman, Diego A. Mejía & Diana C. Montoya - 2018 - Journal of Symbolic Logic 83 (1):208-236.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Compact cardinals and eight values in cichoń’s diagram.Jakob Kellner, Anda Ramona Tănasie & Fabio Elio Tonti - 2018 - Journal of Symbolic Logic 83 (2):790-803.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Ramsey ultrafilters and the reaping number—con(r.M. Goldstern & S. Shelah - 1990 - Annals of Pure and Applied Logic 49 (2):121-142.
    We show that it is consistent that the reaping number r is less than u , the size of the smallest base for an ultrafilter. To show that our forcing preserves certain ultrafilters, we prove a general partition theorem involving Ramsey ideals.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Many simple cardinal invariants.Martin Goldstern & Saharon Shelah - 1993 - Archive for Mathematical Logic 32 (3):203-221.
    Forg
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Creature forcing and five cardinal characteristics in Cichoń’s diagram.Arthur Fischer, Martin Goldstern, Jakob Kellner & Saharon Shelah - 2017 - Archive for Mathematical Logic 56 (7-8):1045-1103.
    We use a creature construction to show that consistently $$\begin{aligned} \mathfrak d=\aleph _1= {{\mathrm{cov}}}< {{\mathrm{non}}}< {{\mathrm{non}}}< {{\mathrm{cof}}} < 2^{\aleph _0}. \end{aligned}$$The same method shows the consistency of $$\begin{aligned} \mathfrak d=\aleph _1= {{\mathrm{cov}}}< {{\mathrm{non}}}< {{\mathrm{non}}}< {{\mathrm{cof}}} < 2^{\aleph _0}. \end{aligned}$$.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Filter-linkedness and its effect on preservation of cardinal characteristics.Jörg Brendle, Miguel A. Cardona & Diego A. Mejía - 2021 - Annals of Pure and Applied Logic 172 (1):102856.
    We introduce the property “F-linked” of subsets of posets for a given free filter F on the natural numbers, and define the properties “μ-F-linked” and “θ-F-Knaster” for posets in a natural way. We show that θ-F-Knaster posets preserve strong types of unbounded families and of maximal almost disjoint families. Concerning iterations of such posets, we develop a general technique to construct θ-Fr-Knaster posets (where Fr is the Frechet ideal) via matrix iterations of <θ-ultrafilter-linked posets (restricted to some level of the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation