Switch to: Citations

Add references

You must login to add references.
  1. In search of ultimate- L the 19th midrasha mathematicae lectures.W. Hugh Woodin - 2017 - Bulletin of Symbolic Logic 23 (1):1-109.
    We give a fairly complete account which first shows that the solution to the inner model problem for one supercompact cardinal will yield an ultimate version ofLand then shows that the various current approaches to inner model theory must be fundamentally altered to provide that solution.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Strong axioms of infinity and elementary embeddings.Robert M. Solovay - 1978 - Annals of Mathematical Logic 13 (1):73.
    Download  
     
    Export citation  
     
    Bookmark   122 citations  
  • Combinatorial principles in the core model for one Woodin cardinal.Ernest Schimmerling - 1995 - Annals of Pure and Applied Logic 74 (2):153-201.
    We study the fine structure of the core model for one Woodin cardinal, building of the work of Mitchell and Steel on inner models of the form . We generalize to some combinatorial principles that were shown by Jensen to hold in L. We show that satisfies the statement: “□κ holds whenever κ the least measurable cardinal λ of order λ++”. We introduce a hierarchy of combinatorial principles □κ, λ for 1 λ κ such that □κ□κ, 1 □κ, λ □κ, (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Equiconsistencies at subcompact cardinals.Itay Neeman & John Steel - 2016 - Archive for Mathematical Logic 55 (1-2):207-238.
    We present equiconsistency results at the level of subcompact cardinals. Assuming SBHδ, a special case of the Strategic Branches Hypothesis, we prove that if δ is a Woodin cardinal and both □ and □δ fail, then δ is subcompact in a class inner model. If in addition □ fails, we prove that δ is Π12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi_1^2}$$\end{document} subcompact in a class inner model. These results are optimal, and lead to equiconsistencies. As a corollary (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Deconstructing inner model theory.Ralf-Dieter Schindler, John Steel & Martin Zeman - 2002 - Journal of Symbolic Logic 67 (2):721-736.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • (1 other version)Elementary embeddings and infinitary combinatorics.Kenneth Kunen - 1971 - Journal of Symbolic Logic 36 (3):407-413.
    One of the standard ways of postulating large cardinal axioms is to consider elementary embeddings,j, from the universe,V, into some transitive submodel,M. See Reinhardt–Solovay [7] for more details. Ifjis not the identity, andκis the first ordinal moved byj, thenκis a measurable cardinal. Conversely, Scott [8] showed that wheneverκis measurable, there is suchjandM. If we had assumed, in addition, that, thenκwould be theκth measurable cardinal; in general, the wider we assumeMto be, the largerκmust be.
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • Strong compactness and other cardinal sins.Jussi Ketonen - 1972 - Annals of Mathematical Logic 5 (1):47.
    Download  
     
    Export citation  
     
    Bookmark   21 citations