Switch to: References

Add citations

You must login to add citations.
  1. Believing the axioms. I.Penelope Maddy - 1988 - Journal of Symbolic Logic 53 (2):481-511.
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • Believing the axioms. II.Penelope Maddy - 1988 - Journal of Symbolic Logic 53 (3):736-764.
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Reflecting stationary sets.Menachem Magidor - 1982 - Journal of Symbolic Logic 47 (4):755-771.
    We prove that the statement "For every pair A, B, stationary subsets of ω 2 , composed of points of cofinality ω, there exists an ordinal α such that both A ∩ α and $B \bigcap \alpha$ are stationary subsets of α" is equiconsistent with the existence of weakly compact cardinal. (This completes results of Baumgartner and Harrington and Shelah.) We also prove, assuming the existence of infinitely many supercompact cardinals, the statement "Every stationary subset of ω ω + 1 (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • (1 other version)Square in core models.Ernest Schimmerling & Martin Zeman - 2001 - Bulletin of Symbolic Logic 7 (3):305-314.
    We prove that in all Mitchell-Steel core models, □ κ holds for all κ. (See Theorem 2.). From this we obtain new consistency strength lower bounds for the failure of □ κ if κ is either singular and countably closed, weakly compact, or measurable. (Corallaries 5, 8, and 9.) Jensen introduced a large cardinal property that we call subcompactness; it lies between superstrength and supercompactness in the large cardinal hierarchy. We prove that in all Jensen core models, □ κ holds (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Reflection in Second-Order Set Theory with Abundant Urelements Bi-Interprets a Supercompact Cardinal.Joel David Hamkins & Bokai Yao - 2024 - Journal of Symbolic Logic 89 (3):1007-1043.
    After reviewing various natural bi-interpretations in urelement set theory, including second-order set theories with urelements, we explore the strength of second-order reflection in these contexts. Ultimately, we prove, second-order reflection with the abundant atom axiom is bi-interpretable and hence also equiconsistent with the existence of a supercompact cardinal. The proof relies on a reflection characterization of supercompactness, namely, a cardinal κ is supercompact if and only if every Π11 sentence true in a structure M (of any size) containing κ in (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Notes on Singular Cardinal Combinatorics.James Cummings - 2005 - Notre Dame Journal of Formal Logic 46 (3):251-282.
    We present a survey of combinatorial set theory relevant to the study of singular cardinals and their successors. The topics covered include diamonds, squares, club guessing, forcing axioms, and PCF theory.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Characterization of □κin core models.Ernest Schimmerling & Martin Zeman - 2004 - Journal of Mathematical Logic 4 (01):1-72.
    We present a general construction of a □κ-sequence in Jensen's fine structural extender models. This construction yields a local definition of a canonical □κ-sequence as well as a characterization of those cardinals κ, for which the principle □κ fails. Such cardinals are called subcompact and can be described in terms of elementary embeddings. Our construction is carried out abstractly, making use only of a few fine structural properties of levels of the model, such as solidity and condensation.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Logicality and model classes.Juliette Kennedy & Jouko Väänänen - 2021 - Bulletin of Symbolic Logic 27 (4):385-414.
    We ask, when is a property of a model a logical property? According to the so-called Tarski–Sher criterion this is the case when the property is preserved by isomorphisms. We relate this to model-theoretic characteristics of abstract logics in which the model class is definable. This results in a graded concept of logicality in the terminology of Sagi [46]. We investigate which characteristics of logics, such as variants of the Löwenheim–Skolem theorem, Completeness theorem, and absoluteness, are relevant from the logicality (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A model of the generic Vopěnka principle in which the ordinals are not Mahlo.Victoria Gitman & Joel David Hamkins - 2019 - Archive for Mathematical Logic 58 (1-2):245-265.
    The generic Vopěnka principle, we prove, is relatively consistent with the ordinals being non-Mahlo. Similarly, the generic Vopěnka scheme is relatively consistent with the ordinals being definably non-Mahlo. Indeed, the generic Vopěnka scheme is relatively consistent with the existence of a \-definable class containing no regular cardinals. In such a model, there can be no \-reflecting cardinals and hence also no remarkable cardinals. This latter fact answers negatively a question of Bagaria, Gitman and Schindler.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Infinitary combinatorics and modal logic.Andreas Blass - 1990 - Journal of Symbolic Logic 55 (2):761-778.
    We show that the modal propositional logic G, originally introduced to describe the modality "it is provable that", is also sound for various interpretations using filters on ordinal numbers, for example the end-segment filters, the club filters, or the ineffable filters. We also prove that G is complete for the interpretation using end-segment filters. In the case of club filters, we show that G is complete if Jensen's principle □ κ holds for all $\kappa ; on the other hand, it (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • An ordinal analysis of parameter free Π12-comprehension.Michael Rathjen - 2005 - Archive for Mathematical Logic 44 (3):263-362.
    Abstract.This paper is the second in a series of three culminating in an ordinal analysis of Π12-comprehension. Its objective is to present an ordinal analysis for the subsystem of second order arithmetic with Δ12-comprehension, bar induction and Π12-comprehension for formulae without set parameters. Couched in terms of Kripke-Platek set theory, KP, the latter system corresponds to KPi augmented by the assertion that there exists a stable ordinal, where KPi is KP with an additional axiom stating that every set is contained (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Recent advances in ordinal analysis: Π 21-CA and related systems.Michael Rathjen - 1995 - Bulletin of Symbolic Logic 1 (4):468 - 485.
    §1. Introduction. The purpose of this paper is, in general, to report the state of the art of ordinal analysis and, in particular, the recent success in obtaining an ordinal analysis for the system of -analysis, which is the subsystem of formal second order arithmetic, Z2, with comprehension confined to -formulae. The same techniques can be used to provide ordinal analyses for theories that are reducible to iterated -comprehension, e.g., -comprehension. The details will be laid out in [28].Ordinal-theoretic proof theory (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Identity crises and strong compactness.Arthur Apter & James Cummings - 2000 - Journal of Symbolic Logic 65 (4):1895-1910.
    Combining techniques of the first author and Shelah with ideas of Magidor, we show how to get a model in which, for fixed but arbitrary finite n, the first n strongly compact cardinals κ 1 ,..., κ n are so that κ i for i = 1,..., n is both the i th measurable cardinal and κ + i supercompact. This generalizes an unpublished theorem of Magidor and answers a question of Apter and Shelah.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Maddy On The Multiverse.Claudio Ternullo - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 43-78.
    Penelope Maddy has recently addressed the set-theoretic multiverse, and expressed reservations on its status and merits ([Maddy, 2017]). The purpose of the paper is to examine her concerns, by using the interpretative framework of set-theoretic naturalism. I first distinguish three main forms of 'multiversism', and then I proceed to analyse Maddy's concerns. Among other things, I take into account salient aspects of multiverse-related mathematics , in particular, research programmes in set theory for which the use of the multiverse seems to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Ultrafilters over a measurable cardinal.A. Kanamori - 1976 - Annals of Mathematical Logic 10 (3-4):315-356.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Patterns of compact cardinals.Arthur W. Apter - 1997 - Annals of Pure and Applied Logic 89 (2-3):101-115.
    We show relative to strong hypotheses that patterns of compact cardinals in the universe, where a compact cardinal is one which is either strongly compact or supercompact, can be virtually arbitrary. Specifically, we prove if V “ZFC + Ω is the least inaccessible limit of measurable limits of supercompact cardinals + ƒ : Ω → 2 is a function”, then there is a partial ordering P V so that for , There is a proper class of compact cardinals + If (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • The wholeness axiom and Laver sequences.Paul Corazza - 2000 - Annals of Pure and Applied Logic 105 (1-3):157-260.
    In this paper we introduce the Wholeness Axiom , which asserts that there is a nontrivial elementary embedding from V to itself. We formalize the axiom in the language {∈, j } , adding to the usual axioms of ZFC all instances of Separation, but no instance of Replacement, for j -formulas, as well as axioms that ensure that j is a nontrivial elementary embedding from the universe to itself. We show that WA has consistency strength strictly between I 3 (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The weak □* is really weaker than the full □.Shai Ben-David & Menachem Magidor - 1986 - Journal of Symbolic Logic 51 (4):1029 - 1033.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Implications between strong large cardinal axioms.Richard Laver - 1997 - Annals of Pure and Applied Logic 90 (1-3):79-90.
    The rank-into-rank and stronger large cardinal axioms assert the existence of certain elementary embeddings. By the preservation of the large cardinal properties of the embeddings under certain operations, strong implications between various of these axioms are derived.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Universal graphs at the successor of a singular cardinal.Mirna Džamonja & Saharon Shelah - 2003 - Journal of Symbolic Logic 68 (2):366-388.
    The paper is concerned with the existence of a universal graph at the successor of a strong limit singular μ of cofinality ℵ0. Starting from the assumption of the existence of a supercompact cardinal, a model is built in which for some such μ there are $\mu^{++}$ graphs on μ+ that taken jointly are universal for the graphs on μ+, while $2^{\mu^+} \gg \mu^{++}$ . The paper also addresses the general problem of obtaining a framework for consistency results at the (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Laver sequences for extendible and super-almost-huge cardinals.Paul Corazza - 1999 - Journal of Symbolic Logic 64 (3):963-983.
    Versions of Laver sequences are known to exist for supercompact and strong cardinals. Assuming very strong axioms of infinity, Laver sequences can be constructed for virtually any globally defined large cardinal not weaker than a strong cardinal; indeed, under strong hypotheses, Laver sequences can be constructed for virtually any regular class of embeddings. We show here that if there is a regular class of embeddings with critical point κ, and there is an inaccessible above κ, then it is consistent for (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The large cardinals between supercompact and almost-huge.Norman Lewis Perlmutter - 2015 - Archive for Mathematical Logic 54 (3-4):257-289.
    I analyze the hierarchy of large cardinals between a supercompact cardinal and an almost-huge cardinal. Many of these cardinals are defined by modifying the definition of a high-jump cardinal. A high-jump cardinal is defined as the critical point of an elementary embedding j:V→M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${j: V \to M}$$\end{document} such that M is closed under sequences of length sup{j|f:κ→κ}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sup\{{j\,|\,f: \kappa \to \kappa}\}}$$\end{document}. Some of the other (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The linearity of the Mitchell order.Gabriel Goldberg - 2018 - Journal of Mathematical Logic 18 (1):1850005.
    We show from an abstract comparison principle that the Mitchell order is linear on sufficiently strong ultrafilters: normal ultrafilters, Dodd solid ultrafilters, and assuming GCH, generalized normal ultrafilters. This gives a conditional answer to the well-known question of whether a [Formula: see text]-supercompact cardinal [Formula: see text] must carry more than one normal measure of order 0. Conditioned on a very plausible iteration hypothesis, the answer is no, since the Ultrapower Axiom holds in the canonical inner models at the finite (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On löwenheim–skolem–tarski numbers for extensions of first order logic.Menachem Magidor & Jouko Väänänen - 2011 - Journal of Mathematical Logic 11 (1):87-113.
    We show that, assuming the consistency of a supercompact cardinal, the first inaccessible cardinal can satisfy a strong form of a Löwenheim–Skolem–Tarski theorem for the equicardinality logic L, a logic introduced in [5] strictly between first order logic and second order logic. On the other hand we show that in the light of present day inner model technology, nothing short of a supercompact cardinal suffices for this result. In particular, we show that the Löwenheim–Skolem–Tarski theorem for the equicardinality logic at (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Indestructibility and level by level equivalence and inequivalence.Arthur W. Apter - 2007 - Mathematical Logic Quarterly 53 (1):78-85.
    If κ < λ are such that κ is indestructibly supercompact and λ is 2λ supercompact, it is known from [4] that {δ < κ | δ is a measurable cardinal which is not a limit of measurable cardinals and δ violates level by level equivalence between strong compactness and supercompactness}must be unbounded in κ. On the other hand, using a variant of the argument used to establish this fact, it is possible to prove that if κ < λ are (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Weakly remarkable cardinals, erdős cardinals, and the generic vopěnka principle.Trevor M. Wilson - 2019 - Journal of Symbolic Logic 84 (4):1711-1721.
    We consider a weak version of Schindler’s remarkable cardinals that may fail to be ${{\rm{\Sigma }}_2}$-reflecting. We show that the ${{\rm{\Sigma }}_2}$-reflecting weakly remarkable cardinals are exactly the remarkable cardinals, and that the existence of a non-${{\rm{\Sigma }}_2}$-reflecting weakly remarkable cardinal has higher consistency strength: it is equiconsistent with the existence of an ω-Erdős cardinal. We give an application involving gVP, the generic Vopěnka principle defined by Bagaria, Gitman, and Schindler. Namely, we show that gVP + “Ord is not ${{\rm{\Delta (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Exactly controlling the non-supercompact strongly compact cardinals.Arthur W. Apter & Joel David Hamkins - 2003 - Journal of Symbolic Logic 68 (2):669-688.
    We summarize the known methods of producing a non-supercompact strongly compact cardinal and describe some new variants. Our Main Theorem shows how to apply these methods to many cardinals simultaneously and exactly control which cardinals are supercompact and which are only strongly compact in a forcing extension. Depending upon the method, the surviving non-supercompact strongly compact cardinals can be strong cardinals, have trivial Mitchell rank or even contain a club disjoint from the set of measurable cardinals. These results improve and (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Indestructibility of Vopěnka’s Principle.Andrew D. Brooke-Taylor - 2011 - Archive for Mathematical Logic 50 (5-6):515-529.
    Vopěnka’s Principle is a natural large cardinal axiom that has recently found applications in category theory and algebraic topology. We show that Vopěnka’s Principle and Vopěnka cardinals are relatively consistent with a broad range of other principles known to be independent of standard (ZFC) set theory, such as the Generalised Continuum Hypothesis, and the existence of a definable well-order on the universe of all sets. We achieve this by showing that they are indestructible under a broad class of forcing constructions, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Forcing with finite conditions.Gregor Dolinar & Mirna Džamonja - 2013 - Annals of Pure and Applied Logic 164 (1):49-64.
    We give a construction of the square principle by means of forcing with finite conditions.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A model for a very good scale and a bad scale.Dima Sinapova - 2008 - Journal of Symbolic Logic 73 (4):1361-1372.
    Given a supercompact cardinal κ and a regular cardinal Λ < κ, we describe a type of forcing such that in the generic extension the cofinality of κ is Λ, there is a very good scale at κ, a bad scale at κ, and SCH at κ fails. When creating our model we have great freedom in assigning the value of 2κ, and so we can make SCH hold or fail arbitrarily badly.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Club Guessing Ideal: Commentary on a Theorem of Gitik and Shelah.Matthew Foreman & Peter Komjath - 2005 - Journal of Mathematical Logic 5 (1):99-147.
    It is shown in this paper that it is consistent (relative to almost huge cardinals) for various club guessing ideals to be saturated.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Non-closure of the image model and absence of fixed points.Claude Sureson - 1985 - Annals of Pure and Applied Logic 28 (3):287-314.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The tree property and the failure of SCH at uncountable cofinality.Dima Sinapova - 2012 - Archive for Mathematical Logic 51 (5-6):553-562.
    Given a regular cardinal λ and λ many supercompact cardinals, we describe a type of forcing such that in the generic extension there is a cardinal κ with cofinality λ, the Singular Cardinal Hypothesis at κ fails, and the tree property holds at κ+.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Many-times huge and superhuge cardinals.Julius B. Barbanel, Carlos A. Diprisco & It Beng Tan - 1984 - Journal of Symbolic Logic 49 (1):112-122.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Tallness and level by level equivalence and inequivalence.Arthur W. Apter - 2010 - Mathematical Logic Quarterly 56 (1):4-12.
    We construct two models containing exactly one supercompact cardinal in which all non-supercompact measurable cardinals are strictly taller than they are either strongly compact or supercompact. In the first of these models, level by level equivalence between strong compactness and supercompactness holds. In the other, level by level inequivalence between strong compactness and supercompactness holds. Each universe has only one strongly compact cardinal and contains relatively few large cardinals.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Indestructibility and stationary reflection.Arthur W. Apter - 2009 - Mathematical Logic Quarterly 55 (3):228-236.
    If κ < λ are such that κ is a strong cardinal whose strongness is indestructible under κ -strategically closed forcing and λ is weakly compact, then we show thatA = {δ < κ | δ is a non-weakly compact Mahlo cardinal which reflects stationary sets}must be unbounded in κ. This phenomenon, however, need not occur in a universe with relatively few large cardinals. In particular, we show how to construct a model where no cardinal is supercompact up to a (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Between strong and superstrong.Stewart Baldwin - 1986 - Journal of Symbolic Logic 51 (3):547-559.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The ⊲-ordering on normal ultrafilters.Stewart Baldwin - 1985 - Journal of Symbolic Logic 50 (4):936-952.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Axiom I 0 and higher degree theory.Xianghui Shi - 2015 - Journal of Symbolic Logic 80 (3):970-1021.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Ad and patterns of singular cardinals below θ.Arthur W. Apter - 1996 - Journal of Symbolic Logic 61 (1):225-235.
    Using Steel's recent result that assuming AD, in L[R] below Θ, κ is regular $\operatorname{iff} \kappa$ is measurable, we mimic below Θ certain earlier results of Gitik. In particular, we construct via forcing a model in which all uncountable cardinals below Θ are singular and a model in which the only regular uncountable cardinal below Θ is ℵ 1.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The least strongly compact can be the least strong and indestructible.Arthur W. Apter - 2006 - Annals of Pure and Applied Logic 144 (1-3):33-42.
    We construct two models in which the least strongly compact cardinal κ is also the least strong cardinal. In each of these models, κ satisfies indestructibility properties for both its strong compactness and strongness.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)AD and the supercompactness of ℵ1.Howard Becker - 1981 - Journal of Symbolic Logic 46 (4):822-842.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the Mitchell and Rudin-Kiesler orderings of ultrafilters.Moti Gitik - 1988 - Annals of Pure and Applied Logic 39 (2):175-197.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Objectivity over objects: A case study in theory formation.Kai Hauser - 2001 - Synthese 128 (3):245 - 285.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Diamond, square, and level by level equivalence.Arthur W. Apter - 2005 - Archive for Mathematical Logic 44 (3):387-395.
    We force and construct a model in which level by level equivalence between strong compactness and supercompactness holds, along with certain additional combinatorial properties. In particular, in this model, ♦ δ holds for every regular uncountable cardinal δ, and below the least supercompact cardinal κ, □ δ holds on a stationary subset of κ. There are no restrictions in our model on the structure of the class of supercompact cardinals.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • $$I_0$$ and combinatorics at $$\lambda ^+$$.Nam Trang & Xianghui Shi - 2017 - Archive for Mathematical Logic 56 (1):131-154.
    We investigate the compatibility of $$I_0$$ with various combinatorial principles at $$\lambda ^+$$, which include the existence of $$\lambda ^+$$ -Aronszajn trees, square principles at $$\lambda $$, the existence of good scales at $$\lambda $$, stationary reflections for subsets of $$\lambda ^{+}$$, diamond principles at $$\lambda $$ and the singular cardinal hypothesis at $$\lambda $$. We also discuss whether these principles can hold in $$L(V_{\lambda +1})$$.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Supercompactness and level by level equivalence are compatible with indestructibility for strong compactness.Arthur W. Apter - 2007 - Archive for Mathematical Logic 46 (3-4):155-163.
    It is known that if $\kappa < \lambda$ are such that κ is indestructibly supercompact and λ is 2λ supercompact, then level by level equivalence between strong compactness and supercompactness fails. We prove a theorem which points towards this result being best possible. Specifically, we show that relative to the existence of a supercompact cardinal, there is a model for level by level equivalence between strong compactness and supercompactness containing a supercompact cardinal κ in which κ’s strong compactness is indestructible (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Left division in the free left distributive algebra on many generators.Sheila K. Miller - 2016 - Archive for Mathematical Logic 55 (1-2):177-205.
    Left distributive algebras arise in the study of classical structures such as groups, knots, and braids, as well as more exotic objects like large cardinals. A long-standing open question is whether the set of left divisors of every term in the free left distributive algebra on any number of generators is well-ordered. A conjecture of J. Moody describes a halting condition for descending sequences of left divisors in the free left distributive algebra on an arbitrary number of generators. In this (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Failures of SCH and Level by Level Equivalence.Arthur W. Apter - 2006 - Archive for Mathematical Logic 45 (7):831-838.
    We construct a model for the level by level equivalence between strong compactness and supercompactness in which below the least supercompact cardinal κ, there is a stationary set of cardinals on which SCH fails. In this model, the structure of the class of supercompact cardinals can be arbitrary.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Indestructibility, instances of strong compactness, and level by level inequivalence.Arthur W. Apter - 2010 - Archive for Mathematical Logic 49 (7-8):725-741.
    Suppose λ > κ is measurable. We show that if κ is either indestructibly supercompact or indestructibly strong, then A = {δ < κ | δ is measurable, yet δ is neither δ + strongly compact nor a limit of measurable cardinals} must be unbounded in κ. The large cardinal hypothesis on λ is necessary, as we further demonstrate by constructing via forcing two models in which ${A = \emptyset}$ . The first of these contains a supercompact cardinal κ and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations