Switch to: Citations

Add references

You must login to add references.
  1. Time in Quantum Gravity: An Hypothesis.Carlo Rovelli - 1991 - Physical Review D 43 (2):451–456.
    A solution to the issue of time in quantum gravity is proposed. The hypothesis that time is not defined at the fundamental level (at the Planck scale) is considered. A natural extension of canonical Heisenberg-picture quantum mechanics is defined. It is shown that this extension is well defined and can be used to describe the "non-Schrödinger regime," in which a fundamental time variable is not defined. This conclusion rests on a detailed analysis of which quantities are the physical observables of (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Symplectic Quantization II: Dynamics of Space–Time Quantum Fluctuations and the Cosmological Constant.Giacomo Gradenigo - 2021 - Foundations of Physics 51 (3):1-18.
    The symplectic quantization scheme proposed for matter scalar fields in the companion paper (Gradenigo and Livi, arXiv:2101.02125, 2021) is generalized here to the case of space–time quantum fluctuations. That is, we present a new formalism to frame the quantum gravity problem. Inspired by the stochastic quantization approach to gravity, symplectic quantization considers an explicit dependence of the metric tensor gμν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{\mu \nu }$$\end{document} on an additional time variable, named intrinsic time at variance (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations