Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)The Foundations of Statistics.Leonard J. Savage - 1954 - Synthese 11 (1):86-89.
    Download  
     
    Export citation  
     
    Bookmark   871 citations  
  • (1 other version)Uncertainty and probability for branching selves.Peter J. Lewis - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (1):1-14.
    Everettian accounts of quantum mechanics entail that people branch; every possible result of a measurement actually occurs, and I have one successor for each result. Is there room for probability in such an account? The prima facie answer is no; there are no ontic chances here, and no ignorance about what will happen. But since any adequate quantum mechanical theory must make probabilistic predictions, much recent philosophical labor has gone into trying to construct an account of probability for branching selves. (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • (1 other version)The Foundations of Statistics.Leonard J. Savage - 1956 - Philosophy of Science 23 (2):166-166.
    Download  
     
    Export citation  
     
    Bookmark   855 citations  
  • Worlds in the Everett interpretation.David Wallace - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 33 (4):637-661.
    This is a discussion of how we can understand the world-view given to us by the Everett interpretation of quantum mechanics, and in particular the role played by the concept of 'world'. The view presented is that we are entitled to use 'many-worlds' terminology even if the theory does not specify the worlds in the formalism; this is defended by means of an extensive analogy with the concept of an 'instant' or moment of time in relativity, with the lack of (...)
    Download  
     
    Export citation  
     
    Bookmark   71 citations  
  • Quantum Sleeping Beauty.Peter J. Lewis - 2007 - Analysis 67 (1):59-65.
    The Sleeping Beauty paradox in epistemology and the many-worlds interpretation of quantum mechanics both raise problems concerning subjective probability assignments. Furthermore, there are striking parallels between the two cases; in both cases personal experience has a branching structure, and in both cases the agent loses herself among the branches. However, the treatment of probability is very different in the two cases, for no good reason that I can see. Suppose, then, that we adopt the same treatment of probability in each (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • The Many-Worlds Interpretation of Quantum Mechanics.B. DeWitt & N. Graham (eds.) - 1973 - Princeton UP.
    Download  
     
    Export citation  
     
    Bookmark   213 citations  
  • Quantum Mechanics and Experience.David Z. Albert - 1992 - Harvard Up.
    Presents a guide to the basics of quantum mechanics and measurement.
    Download  
     
    Export citation  
     
    Bookmark   266 citations  
  • The Foundations of Statistics.Leonard Savage - 1954 - Wiley Publications in Statistics.
    Classic analysis of the subject and the development of personal probability; one of the greatest controversies in modern statistcal thought.
    Download  
     
    Export citation  
     
    Bookmark   903 citations  
  • The Logic of Decision.Richard C. Jeffrey - 1965 - New York, NY, USA: University of Chicago Press.
    "[This book] proposes new foundations for the Bayesian principle of rational action, and goes on to develop a new logic of desirability and probabtility."—Frederic Schick, _Journal of Philosophy_.
    Download  
     
    Export citation  
     
    Bookmark   770 citations  
  • Many-worlds interpretation of quantum mechanics.Lev Vaidman - 2008 - Stanford Encyclopedia of Philosophy.
    The Many-Worlds Interpretation (MWI) is an approach to quantum mechanics according to which, in addition to the world we are aware of directly, there are many other similar worlds which exist in parallel at the same space and time. The existence of the other worlds makes it possible to remove randomness and action at a distance from quantum theory and thus from all physics.
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • Everett's relative-state formulation of quantum mechanics.Jeffrey Barrett - 2008 - Stanford Encyclopedia of Philosophy.
    Everett's relative-state formulation of quantum mechanics is an attempt to solve the measurement problem by dropping the collapse dynamics from the standard von Neumann-Dirac theory of quantum mechanics. The main problem with Everett's theory is that it is not at all clear how it is supposed to work. In particular, while it is clear that he wanted to explain why we get determinate measurement results in the context of his theory, it is unclear how he intended to do this. There (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Language use in a branching universe.David Wallace - unknown
    I investigate the consequences for semantics, and in particular for the semantics of tense, if time is assumed to have a branching structure not out of metaphysical necessity (to solve some philosophical problem) but just as a contingent physical fact, as is suggested by a currently-popular approach to the interpretation of quantum mechanics.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Is the zero-point energy real?Simon Saunder - unknown
    I consider the arguments to show that the vacuum energy density should receive a large contribution from the zero-point energy. This is the cosmological constant problem, as it was originally framed. I suggest that the matter is interpretation-dependent, and that on certain approaches to foundations, notably Everett's, the problem is a formal one, rather than one based on physical principles.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Understanding Deutsch's probability in a deterministic universe.Hilary Greaves - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (3):423-456.
    Difficulties over probability have often been considered fatal to the Everett interpretation of quantum mechanics. Here I argue that the Everettian can have everything she needs from `probability' without recourse to indeterminism, ignorance, primitive identity over time or subjective uncertainty: all she needs is a particular *rationality principle*. The decision-theoretic approach recently developed by Deutsch and Wallace claims to provide just such a principle. But, according to Wallace, decision theory is itself applicable only if the correct attitude to a future (...)
    Download  
     
    Export citation  
     
    Bookmark   90 citations  
  • (1 other version)Self-locating belief and the sleeping beauty problem.Adam Elga - 2000 - Analysis 60 (2):143–147.
    In addition to being uncertain about what the world is like, one can also be uncertain about one’s own spatial or temporal location in the world. My aim is to pose a problem arising from the interaction between these two sorts of uncertainty, solve the problem, and draw two lessons from the solution.
    Download  
     
    Export citation  
     
    Bookmark   269 citations  
  • Interpreting the many-worlds interpretation.David Albert & Barry Loewer - 1988 - Synthese 77 (November):195-213.
    Download  
     
    Export citation  
     
    Bookmark   189 citations  
  • David Lewis and Schrödinger's Cat.David Papineau - 2004 - Australasian Journal of Philosophy 82 (1):153-169.
    In 'How Many Lives Has Schrödinger's Cat?' David Lewis argues that the Everettian no-collapse interpretation of quantum mechanics is in a tangle when it comes to probabilities. This paper aims to show that the difficulties that Lewis raises are insubstantial. The Everettian metaphysics contains a coherent account of probability. Indeed it accounts for probability rather better than orthodox metaphysics does.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Everett and structure.David Wallace - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (1):87-105.
    I address the problem of indefiniteness in quantum mechanics: the problem that the theory, without changes to its formalism, seems to predict that macroscopic quantities have no definite values. The Everett interpretation is often criticised along these lines, and I shall argue that much of this criticism rests on a false dichotomy: that the macroworld must either be written directly into the formalism or be regarded as somehow illusory. By means of analogy with other areas of physics, I develop the (...)
    Download  
     
    Export citation  
     
    Bookmark   135 citations  
  • (1 other version)How Many Lives Has Schrodinger's Cat?David Lewis - 2004 - Australasian Journal of Philosophy 82 (1):3-22.
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • Probability in Everettian Quantum Mechanics.Peter J. Lewis - 2010 - Manuscrito 33 (1):285--306.
    The main difficulty facing no-collapse theories of quantum mechanics in the Everettian tradition concerns the role of probability within a theory in which every possible outcome of a measurement actually occurs. The problem is two-fold: First, what do probability claims mean within such a theory? Second, what ensures that the probabilities attached to measurement outcomes match those of standard quantum mechanics? Deutsch has recently proposed a decision-theoretic solution to the second problem, according to which agents are rationally required to weight (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Epistemology quantized: Circumstances in which we should come to believe in the Everett interpretation.David Wallace - 2006 - British Journal for the Philosophy of Science 57 (4):655-689.
    I consider exactly what is involved in a solution to the probability problem of the Everett interpretation, in the light of recent work on applying considerations from decision theory to that problem. I suggest an overall framework for understanding probability in a physical theory, and conclude that this framework, when applied to the Everett interpretation, yields the result that that interpretation satisfactorily solves the measurement problem. Introduction What is probability? 2.1 Objective probability and the Principal Principle 2.2 Three ways of (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • The measurement of relative frequency.Neill Graham - 1973 - In B. DeWitt & N. Graham (eds.), The Many-Worlds Interpretation of Quantum Mechanics. Princeton UP. pp. 1--229.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Many Minds are No Worse than One.David Papineau - 1996 - British Journal for the Philosophy of Science 47 (2):233-241.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Sleeping beauty: Reply to Elga.David Lewis - 2001 - Analysis 61 (3):171–76.
    Download  
     
    Export citation  
     
    Bookmark   148 citations  
  • Everettian rationality: defending Deutsch's approach to probability in the Everett interpretation.David Wallace - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (3):415-439.
    An analysis is made of Deutsch's recent claim to have derived the Born rule from decision-theoretic assumptions. It is argued that Deutsch's proof must be understood in the explicit context of the Everett interpretation, and that in this context, it essentially succeeds. Some comments are made about the criticism of Deutsch's proof by Barnum, Caves, Finkelstein, Fuchs, and Schack; it is argued that the flaw which they point out in the proof does not apply if the Everett interpretation is assumed.
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Quantum Theory of Probability and Decisions.David Deutsch - 1999 - Proceedings of the Royal Society of London:3129--37.
    Download  
     
    Export citation  
     
    Bookmark   144 citations  
  • (1 other version)Quantum Mechanics and Experience.[author unknown] - 1994 - Erkenntnis 40 (3):403-406.
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • (1 other version)”Relative state’ formulation of quantum mechanics.Hugh Everett - 1957 - Reviews of Modern Physics 29 (3):454--462.
    Download  
     
    Export citation  
     
    Bookmark   299 citations  
  • (1 other version)On the Everettian epistemic problem.Hilary Greaves - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (1):120-152.
    Recent work in the Everett interpretation has suggested that the problem of probability can be solved by understanding probability in terms of rationality. However, there are *two* problems relating to probability in Everett --- one practical, the other epistemic --- and the rationality-based program *directly* addresses only the practical problem. One might therefore worry that the problem of probability is only `half solved' by this approach. This paper aims to dispel that worry: a solution to the epistemic problem follows from (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Quantum probability from subjective likelihood: Improving on Deutsch's proof of the probability rule.David Wallace - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):311-332.
    I present a proof of the quantum probability rule from decision-theoretic assumptions, in the context of the Everett interpretation. The basic ideas behind the proof are those presented in Deutsch's recent proof of the probability rule, but the proof is simpler and proceeds from weaker decision-theoretic assumptions. This makes it easier to discuss the conceptual ideas involved in the proof, and to show that they are defensible.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • (1 other version)Uncertainty and probability for branching selves.Peter J. Lewis - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (1):1-14.
    Everettian accounts of quantum mechanics entail that people branch; every possible result of a measurement actually occurs, and I have one successor for each result. Is there room for probability in such an account? The prima facie answer is no; there are no ontic chances here, and no ignorance about what will happen. But since any adequate quantum mechanical theory must make probabilistic predictions, much recent philosophical labor has gone into trying to construct an account of probability for branching selves. (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • What is Probability?Simon Saunders - 2004 - Arxiv Preprint Quant-Ph/0412194.
    Probabilities may be subjective or objective; we are concerned with both kinds of probability, and the relationship between them. The fundamental theory of objective probability is quantum mechanics: it is argued that neither Bohr's Copenhagen interpretation, nor the pilot-wave theory, nor stochastic state-reduction theories, give a satisfactory answer to the question of what objective probabilities are in quantum mechanics, or why they should satisfy the Born rule; nor do they give any reason why subjective probabilities should track objective ones. But (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • (1 other version)On the Everettian Epistemic Problem.Hilary Greaves - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (1):120-152.
    Recent work in the Everett interpretation has suggested that the problem of probability can be solved by understanding probability in terms of rationality. However, there are *two* problems relating to probability in Everett --- one practical, the other epistemic --- and the rationality-based program *directly* addresses only the practical problem. One might therefore worry that the problem of probability is only `half solved' by this approach. This paper aims to dispel that worry: a solution to the epistemic problem follows from (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations