Switch to: References

Citations of:

Interpreting the many-worlds interpretation

Synthese 77 (November):195-213 (1988)

Add citations

You must login to add citations.
  1. (1 other version)Many Worlds: an introduction.Simon Saunders - unknown
    This is a self-contained introduction to the Everett interpretation of quantum mechanics. It is the introductory chapter of Many Worlds? Everett, quantum theory, and reality, S. Saunders, J. Barrett, A. Kent, and D. Wallace, Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • The Measurement Problem: Decoherence and Convivial Solipsism.Hervé Zwirn - 2016 - Foundations of Physics 46 (6):635-667.
    The problem of measurement is often considered an inconsistency inside the quantum formalism. Many attempts to solve it have been made since the inception of quantum mechanics. The form of these attempts depends on the philosophical position that their authors endorse. I will review some of them and analyze their relevance. The phenomenon of decoherence is often presented as a solution lying inside the pure quantum formalism and not demanding any particular philosophical assumption. Nevertheless, a widely debated question is to (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)The measurement problem revisited.Shan Gao - unknown
    It has been realized that in order to solve the measurement problem, the physical state representing the measurement result is required to be also the physical state on which the mental state of an observer supervenes. This introduces an additional restriction on the solutions to the measurement problem. In this paper, I give a new formulation of the measurement problem which lays more stress on psychophysical connection, and analyze whether Everett's theory, Bohm's theory and dynamical collapse theories can satisfy the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Quantum Mechanics and the Plight of Physicalism.Fernando Birman - 2009 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 40 (2):207-225.
    The literature on physicalism often fails to elucidate, I think, what the word physical in physical ism precisely means. Philosophers speak at times of an ideal set of fundamental physical facts, or they stipulate that physical means non-mental , such that all fundamental physical facts are fundamental facts pertaining to the non-mental. In this article, I will probe physicalism in the very much tangible framework of quantum mechanics. Although this theory, unlike “ideal physics” or some “final theory of non-mentality”, is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Quantum-Mechanical Argument for Mind–Body Dualism.Jeffrey A. Barrett - 2006 - Erkenntnis 65 (1):97-115.
    I argue that a strong mind–body dualism is required of any formulation of quantum mechanics that satisfies a relatively weak set of explanatory constraints. Dropping one or more of these constraints may allow one to avoid the commitment to a mind–body dualism but may also require a commitment to a physical–physical dualism that is at least as objectionable. Ultimately, it is the preferred basis problem that pushes both collapse and no-collapse theories in the direction of a strong dualism in resolving (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Quantum probability from subjective likelihood: Improving on Deutsch's proof of the probability rule.David Wallace - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):311-332.
    I present a proof of the quantum probability rule from decision-theoretic assumptions, in the context of the Everett interpretation. The basic ideas behind the proof are those presented in Deutsch's recent proof of the probability rule, but the proof is simpler and proceeds from weaker decision-theoretic assumptions. This makes it easier to discuss the conceptual ideas involved in the proof, and to show that they are defensible.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • Quantum mechanics as a deterministic theory of a continuum of worlds.Kim Joris Boström - 2015 - Quantum Studies: Mathematics and Foundations 2 (3):315-347.
    A non-relativistic quantum mechanical theory is proposed that describes the universe as a continuum of worlds whose mutual interference gives rise to quantum phenomena. A logical framework is introduced to properly deal with propositions about objects in a multiplicity of worlds. In this logical framework, the continuum of worlds is treated in analogy to the continuum of time points; both “time” and “world” are considered as mutually independent modes of existence. The theory combines elements of Bohmian mechanics and of Everett’s (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Interpreting Quantum Mechanics in Terms of Random Discontinuous Motion of Particles.Shan Gao - unknown
    This thesis is an attempt to reconstruct the conceptual foundations of quantum mechanics. First, we argue that the wave function in quantum mechanics is a description of random discontinuous motion of particles, and the modulus square of the wave function gives the probability density of the particles being in certain locations in space. Next, we show that the linear non-relativistic evolution of the wave function of an isolated system obeys the free Schrödinger equation due to the requirements of spacetime translation (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • The Everett Interpretation.David Wallace - unknown
    The Everett interpretation of quantum mechanics - better known as the Many-Worlds Theory - has had a rather uneven reception. Mainstream philosophers have scarcely heard of it, save as science fiction. In philosophy of physics it is well known but has historically been fairly widely rejected. Among physicists, it is taken very seriously indeed, arguably tied for first place in popularity with more traditional operationalist views of quantum mechanics. In this article, I provide a fairly short and self-contained introduction to (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Quantum Mechanics and Intentionality.Godehard Brüntrup - 2014 - In Antonella Corradini & Uwe Meixner (eds.), Quantum Physics Meets the Philosophy of Mind: New Essays on the Mind-Body Relation in Quantum-Theoretical Perspective. Boston: De Gruyter. pp. 35-49.
    An essay on the connection between the mind-body-problem and quantum mechanics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Quantum Mechanics and Ontological Commitment.Peter Lewis - 1993 - Kriterion - Journal of Philosophy 5 (1):3-6.
    Download  
     
    Export citation  
     
    Bookmark  
  • Does it Make Sense to Speak of Self-Locating Uncertainty in the Universal Wave Function? Remarks on Sebens and Carroll.Adrian Kent - 2015 - Foundations of Physics 45 (2):211-217.
    Following a proposal of Vaidman The Stanford encyclopaedia of philosophy, 2014) The probable and the improbable: understanding probability in physics, essays in memory of Itamar Pitowsky, 2011), Sebens and Carroll , have argued that in Everettian quantum theory, observers are uncertain, before they complete their observation, about which Everettian branch they are on. They argue further that this solves the problem of making sense of probabilities within Everettian quantum theory, even though the theory itself is deterministic. We note some problems (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Fundamental physical theories: mathematical structures grounded on a primitive ontology.Valia Allori - 2007 - Dissertation, Rutgers
    In my dissertation I analyze the structure of fundamental physical theories. I start with an analysis of what an adequate primitive ontology is, discussing the measurement problem in quantum mechanics and theirs solutions. It is commonly said that these theories have little in common. I argue instead that the moral of the measurement problem is that the wave function cannot represent physical objects and a common structure between these solutions can be recognized: each of them is about a clear three-dimensional (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Many-Measurements or Many-Worlds? A Dialogue.Diederik Aerts & Massimiliano Sassoli de Bianchi - 2015 - Foundations of Science 20 (4):399-427.
    Many advocates of the Everettian interpretation consider that theirs is the only approach to take quantum mechanics really seriously, and that this approach allows to deduce a fantastic scenario for our reality, one that consists of an infinite number of parallel worlds that branch out continuously. In this article, written in dialogue form, we suggest that quantum mechanics can be taken even more seriously, if the many-worlds view is replaced by a many-measurements view. This allows not only to derive the (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Causal Decision Theory and EPR correlations.Arif Ahmed & Adam Caulton - 2014 - Synthese 191 (18):4315-4352.
    The paper argues that on three out of eight possible hypotheses about the EPR experiment we can construct novel and realistic decision problems on which (a) Causal Decision Theory and Evidential Decision Theory conflict (b) Causal Decision Theory and the EPR statistics conflict. We infer that anyone who fully accepts any of these three hypotheses has strong reasons to reject Causal Decision Theory. Finally, we extend the original construction to show that anyone who gives any of the three hypotheses any (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Emil du Bois-Reymond's Reflections on Consciousness.Gabriel Finkelstein - 2014 - In Chris Smith Harry Whitaker (ed.), Brain, Mind and Consciousness in the History of Neuroscience. Springer. pp. 163-184.
    The late 19th-century Ignorabimus controversy over the limits of scientific knowledge has often been characterized as proclaiming the end of intellectual progress, and by implication, as plunging Germany into a crisis of pessimism from which Liberalism never recovered. My research supports the opposite interpretation. The initiator of the Ignorabimus controversy, Emil du Bois-Reymond, was a physiologist who worked his whole life against the forces of obscurantism, whether they came from the Catholic and Conservative Right or the scientistic and millenarian Left. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Inference to the Best explanation.Peter Lipton - 2005 - In Martin Curd & Stathis Psillos (eds.), The Routledge Companion to Philosophy of Science. New York: Routledge. pp. 193.
    Science depends on judgments of the bearing of evidence on theory. Scientists must judge whether an observation or the result of an experiment supports, disconfirms, or is simply irrelevant to a given hypothesis. Similarly, scientists may judge that, given all the available evidence, a hypothesis ought to be accepted as correct or nearly so, rejected as false, or neither. Occasionally, these evidential judgments can be made on deductive grounds. If an experimental result strictly contradicts a hypothesis, then the truth of (...)
    Download  
     
    Export citation  
     
    Bookmark   303 citations  
  • Feminist Philosophy of Science.Lynn Hankinson Nelson - 2002 - In Peter K. Machamer & Michael Silberstein (eds.), The Blackwell guide to the philosophy of science. Malden, Mass.: Blackwell. pp. 312–331.
    This chapter contains sections titled: Highlights of Past Literature Current Work Future Work.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • How subtle is Gödel's theorem? More on Roger Penrose.Martin Davis - 1993 - Behavioral and Brain Sciences 16 (3):611-612.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Can Everett be Interpreted Without Extravaganza?Louis Marchildon - 2011 - Foundations of Physics 41 (3):357-362.
    Everett’s relative states interpretation of quantum mechanics has met with problems related to probability, the preferred basis, and multiplicity. The third theme, I argue, is the most important one. It has led to developments of the original approach into many-worlds, many-minds, and decoherence-based approaches. The latter especially have been advocated in recent years, in an effort to understand multiplicity without resorting to what is often perceived as extravagant constructions. Drawing from and adding to arguments of others, I show that proponents (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Observers and Locality in Everett Quantum Field Theory.Mark A. Rubin - 2011 - Foundations of Physics 41 (7):1236-1262.
    A model for measurement in collapse-free nonrelativistic fermionic quantum field theory is presented. In addition to local propagation and effectively-local interactions, the model incorporates explicit representations of localized observers, thus extending an earlier model of entanglement generation in Everett quantum field theory (Rubin in Found. Phys. 32:1495–1523, 2002). Transformations of the field operators from the Heisenberg picture to the Deutsch-Hayden picture, involving fictitious auxiliary fields, establish the locality of the model. The model is applied to manifestly-local calculations of the results (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Relative Frequency and Probability in the Everett Interpretation of Heisenberg-Picture Quantum Mechanics.Mark A. Rubin - 2003 - Foundations of Physics 33 (3):379-405.
    The existence of probability in the sense of the frequency interpretation, i.e., probability as “long term relative frequency,” is shown to follow from the dynamics and the interpretational rules of Everett quantum mechanics in the Heisenberg picture. This proof is free of the difficulties encountered in applying to the Everett interpretation previous results regarding relative frequency and probability in quantum mechanics. The ontology of the Everett interpretation in the Heisenberg picture is also discussed.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Against 'Realism'.Travis Norsen - 2007 - Foundations of Physics 37 (3):311-340.
    We examine the prevalent use of the phrase “local realism” in the context of Bell’s Theorem and associated experiments, with a focus on the question: what exactly is the ‘realism’ in ‘local realism’ supposed to mean? Carefully surveying several possible meanings, we argue that all of them are flawed in one way or another as attempts to point out a second premise (in addition to locality) on which the Bell inequalities rest, and (hence) which might be rejected in the face (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Natural Kinds as Scientific Models.Luiz Henrique Dutra - 2011 - Boston Studies in the Philosophy of Science 290:141-150.
    The concept of natural kind is center stage in the debates about scientific realism. Champions of scientific realism such as Richard Boyd hold that our most developed scientific theories allow us to “cut the world at its joints” (Boyd, 1981, 1984, 1991). In the long run we can disclose natural kinds as nature made them, though as science progresses improvements in theory allow us to revise the extension of natural kind terms.
    Download  
     
    Export citation  
     
    Bookmark  
  • Cognitive Science of Religion and the Study of Theological Concepts.Helen De Cruz - 2014 - Topoi 33 (2):487-497.
    The cultural transmission of theological concepts remains an underexplored topic in the cognitive science of religion (CSR). In this paper, I examine whether approaches from CSR, especially the study of content biases in the transmission of beliefs, can help explain the cultural success of some theological concepts. This approach reveals that there is more continuity between theological beliefs and ordinary religious beliefs than CSR authors have hitherto recognized: the cultural transmission of theological concepts is influenced by content biases that also (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The Crazyist Metaphysics of Mind.Eric Schwitzgebel - 2014 - Australasian Journal of Philosophy 92 (4):665-682.
    The Crazyist Metaphysics of Mind. . ???aop.label???
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Many Worlds and Schrodinger's First Quantum Theory.Valia Allori, Sheldon Goldstein, Roderich Tumulka & Nino Zanghì - 2011 - British Journal for the Philosophy of Science 62 (1):1-27.
    Schrödinger’s first proposal for the interpretation of quantum mechanics was based on a postulate relating the wave function on configuration space to charge density in physical space. Schrödinger apparently later thought that his proposal was empirically wrong. We argue here that this is not the case, at least for a very similar proposal with charge density replaced by mass density. We argue that when analyzed carefully, this theory is seen to be an empirically adequate many-worlds theory and not an empirically (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • (1 other version)Quantum probability and many worlds.Meir Hemmo - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):333-350.
    We discuss the meaning of probabilities in the many worlds interpretation of quantum mechanics. We start by presenting very briefly the many worlds theory, how the problem of probability arises, and some unsuccessful attempts to solve it in the past. Then we criticize a recent attempt by Deutsch to derive the quantum mechanical probabilities from the nonprobabilistic parts of quantum mechanics and classical decision theory. We further argue that the Born probability does not make sense even as an additional probability (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • McTaggart and modern physics.Bradley Monton - 2009 - Philosophia 38 (2):257-264.
    This paper delves into McTaggart’s metaphysical account of reality without time, and compares and contrasts McTaggart’s account with the account of reality given by modern physics. This comparison is of interest, because there are suggestions from contemporary physics that there is no time at the fundamental level. Physicists and philosophers of physics recognize that we do not have a good understanding of how the world could be such that time is unreal. I argue that, from the perspective of one who (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The modal nature of structures in ontic structural realism.Michael Esfeld - 2009 - International Studies in the Philosophy of Science 23 (2):179 – 194.
    Ontic structural realism is the view that structures are what is real in the first place in the domain of fundamental physics. The structures are usually conceived as including a primitive modality. However, it has not been spelled out as yet what exactly that modality amounts to. This paper proposes to fill this lacuna by arguing that the fundamental physical structures possess a causal essence, being powers. Applying the debate about causal vs categorical properties in analytic metaphysics to ontic structural (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • On schizophrenic experiences of the neutron or why we should believe in the many‐worlds interpretation of quantum theory.Lev Vaidman - 1990 - International Studies in the Philosophy of Science 12 (3):245 – 261.
    This is a philosophical paper in favor of the many-worlds interpretation of quantum theory. The necessity of introducing many worlds is explained by analyzing a neutron interference experiment. The concept of the “measure of existence of a world” is introduced and some difficulties with the issue of probability in the framework of the MWI are resolved.
    Download  
     
    Export citation  
     
    Bookmark   81 citations  
  • Quantum Mechanics and Reality: An Interpretation of Everett's Theory.Christoph Albert Lehner - 1997 - Dissertation, Stanford University
    The central part of Everett's formulation of quantum mechanics is a quantum mechanical model of memory and of observation as the recording of information in a memory. To use this model as an answer to the measurement problem, Everett has to assume that a conscious observer can be in a superposition of such memory states and be unaware of it. This assumption has puzzled generations of readers. ;The fundamental aim of this dissertation is to find a set of simpler assumptions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)On what grounds what.Jonathan Schaffer - 2009 - In Ryan Wasserman, David Manley & David Chalmers (eds.), Metametaphysics: New Essays on the Foundations of Ontology. Oxford, England: Oxford University Press. pp. 347-383.
    On the now dominant Quinean view, metaphysics is about what there is. Metaphysics so conceived is concerned with such questions as whether properties exist, whether meanings exist, and whether numbers exist. I will argue for the revival of a more traditional Aristotelian view, on which metaphysics is about what grounds what. Metaphysics so revived does not bother asking whether properties, meanings, and numbers exist (of course they do!) The question is whether or not they are fundamental.
    Download  
     
    Export citation  
     
    Bookmark   782 citations  
  • When Worlds Collide: Quantum Probability from Observer Selection? [REVIEW]Robin Hanson - 2003 - Foundations of Physics 33 (7):1129-1150.
    In Everett's many worlds interpretation, quantum measurements are considered to be decoherence events. If so, then inexact decoherence may allow large worlds to mangle the memory of observers in small worlds, creating a cutoff in observable world size. Smaller world are mangled and so not observed. If this cutoff is much closer to the median measure size than to the median world size, the distribution of outcomes seen in unmangled worlds follows the Born rule. Thus deviations from exact decoherence can (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Drift–diffusion in mangled worlds quantum mechanics.Robin Hanson - unknown
    In Everett’s many-worlds interpretation, where quantum measurements are seen as decoherence events, inexact decoherence may let large worlds mangle the memories of observers in small worlds, creating a cutoff in observable world measure. I solve a growth–drift–diffusion–absorption model of such a mangled worlds scenario, and show that it reproduces the Born probability rule closely, though not exactly. Thus, inexact decoherence may allow the Born rule to be derived in a many-worlds approach via world counting, using a finite number of worlds (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Chance and time.Amit Hagar - 2004 - Dissertation, Ubc
    One of the recurrent problems in the foundations of physics is to explain why we rarely observe certain phenomena that are allowed by our theories and laws. In thermodynamics, for example, the spontaneous approach towards equilibrium is ubiquitous yet the time-reversal-invariant laws that presumably govern thermal behaviour in the microscopic level equally allow spontaneous departure from equilibrium to occur. Why are the former processes frequently observed while the latter are almost never reported? Another example comes from quantum mechanics where the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A mathematical characterization of the physical structure of observers.Matthew J. Donald - 1995 - Foundations of Physics 25 (4):529-571.
    It is proposed that the physical structure of an observer in quantum mechanics is constituted by a pattern of elementary localized switching events. A key preliminary step in giving mathematical expression to this proposal is the introduction of an equivalence relation on sequences of spacetime sets which relates a sequence to any other sequence to which it can be deformed without change of causal arrangement. This allows an individual observer to be associated with a finite structure. The identification of suitable (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Many-worlds interpretation of quantum mechanics.Lev Vaidman - 2008 - Stanford Encyclopedia of Philosophy.
    The Many-Worlds Interpretation (MWI) is an approach to quantum mechanics according to which, in addition to the world we are aware of directly, there are many other similar worlds which exist in parallel at the same space and time. The existence of the other worlds makes it possible to remove randomness and action at a distance from quantum theory and thus from all physics.
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • (1 other version)The role of decoherence in quantum mechanics.Guido Bacciagaluppi - 2003 - Stanford Encyclopedia of Philosophy.
    Interference phenomena are a well-known and crucial feature of quantum mechanics, the two-slit experiment providing a standard example. There are situations, however, in which interference effects are (artificially or spontaneously) suppressed. We shall need to make precise what this means, but the theory of decoherence is the study of (spontaneous) interactions between a system and its environment that lead to such suppression of interference. This study includes detailed modelling of system-environment interactions, derivation of equations (‘master equations’) for the (reduced) state (...)
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • Quantum probability and decision theory, revisited [2002 online-only paper].David Wallace - 2002
    An extended analysis is given of the program, originally suggested by Deutsch, of solving the probability problem in the Everett interpretation by means of decision theory. Deutsch's own proof is discussed, and alternatives are presented which are based upon different decision theories and upon Gleason's Theorem. It is argued that decision theory gives Everettians most or all of what they need from `probability'. Contact is made with Lewis's Principal Principle linking subjective credence with objective chance: an Everettian Principal Principle is (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • The quantum measurement problem: State of play.David Wallace - 2008 - In Dean Rickles (ed.), The Ashgate Companion to Contemporary Philosophy of Physics. Ashgate.
    This is a preliminary version of an article to appear in the forthcoming Ashgate Companion to the New Philosophy of Physics.In it, I aim to review, in a way accessible to foundationally interested physicists as well as physics-informed philosophers, just where we have got to in the quest for a solution to the measurement problem. I don't advocate any particular approach to the measurement problem (not here, at any rate!) but I do focus on the importance of decoherence theory to (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • On dualistic interpretations of quantum mechanics.Bradley Monton - unknown
    Dualistic interpretations attempt to solve the measurement problem of quantum mechanics by postulating the existence of non-physical minds, and by giving a suitable dynamical equation for how these minds evolve. I consider the relative merits of three extant dualistic interpretations, and I defend Squires’ interpretation as preferable to the Albert/ Loewer interpretations. I also argue that, for all three of these interpretations, the minds evolve independently of the physical universe, and hence render the physical universe otiose; the interpretations are better (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Understanding Deutsch's probability in a deterministic universe.Hilary Greaves - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (3):423-456.
    Difficulties over probability have often been considered fatal to the Everett interpretation of quantum mechanics. Here I argue that the Everettian can have everything she needs from `probability' without recourse to indeterminism, ignorance, primitive identity over time or subjective uncertainty: all she needs is a particular *rationality principle*. The decision-theoretic approach recently developed by Deutsch and Wallace claims to provide just such a principle. But, according to Wallace, decision theory is itself applicable only if the correct attitude to a future (...)
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  • Scientific realism and the history of science.Michael Esfeld - 2005 - Philosophy 1:1-15.
    The paper considers the two main challenges to scientific realism, stemming from confirmation holism and the underdetermination thesis as well as from semantic holism and the incommensurability thesis. Against the first challenge, it is argued that there are other criteria besides agreement with experience that enable a rational evaluation of competing theories. Against the second challenge, it is argued that at most a thesis of local incommensurability can be defended that is compatible with a minimal version of scientific realism, namely (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On many-minds interpretations of quantum theory.Matthew J. Donald - unknown
    This paper is a response to some recent discussions of many-minds interpretations in the philosophical literature. After an introduction to the many-minds idea, the complexity of quantum states for macroscopic objects is stressed. Then it is proposed that a characterization of the physical structure of observers is a proper goal for physical theory. It is argued that an observer cannot be defined merely by the instantaneous structure of a brain, but that the history of the brain's functioning must also be (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Dispositions, relational properties and the quantum world.Mauro Dorato - 2017 - In Maximilien Kistler (ed.), Dispositions and Causal Powers, Routledge, 2017,. London: Routledge. pp. pp.249-270..
    In this paper I examine the role of dispositional properties in the most frequently discussed interpretations of non-relativistic quantum mechanics. After offering some motivation for this project, I briefly characterize the distinction between non-dispositional and dispositional properties in the context of quantum mechanics by suggesting a necessary condition for dispositionality – namely contextuality – and, consequently, a sufficient condition for non-dispositionality, namely non-contextuality. Having made sure that the distinction is conceptually sound, I then analyze the plausibility of the widespread, monistic (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Non-relativistic quantum mechanics.Michael Dickson - unknown
    This essay is a discussion of the philosophical and foundational issues that arise in non-relativistic quantum theory. After introducing the formalism of the theory, I consider: characterizations of the quantum formalism, empirical content, uncertainty, the measurement problem, and non-locality. In each case, the main point is to give the reader some introductory understanding of some of the major issues and recent ideas.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Why you don’t want to get in the box with schrödinger's cat.David Papineau - 2003 - Analysis 63 (1):51–58.
    By way of an example, Lewis imagines your being invited to join Schrödinger’s cat in its box for an hour. This box will either fill up with deadly poison fumes or not, depending on whether or not some radioactive atom decays, the probability of decay within an hour being 50%. The invitation is accompanied with some further incentive to comply (Lewis sets it up so there is a significant chance of some pretty bad but not life-threatening punishment if you don’t (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • GRW and the tails problem.Peter Lewis - 1995 - Topoi 14 (1):23-33.
    The GRW theory is a recent attempt to solve the measurement problem in quantum mechanics, and the tails problem is a well-known and potentially fatal criticism of the GRW theory. The first half of the paper is an exposition of the measurement problem, the GRW theory, and the tails problem. In the remainder of the paper, two methods of dealing with the tails problem are considered: first, altering the GRW theory so as to avoid the tails problem; and second, denying (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • On the nature of experience in the bare theory.Jeffrey A. Barrett - 1997 - Synthese 113 (3):347-355.
    Quantum mechanics without the collapse postulate, the bare theory, was proposed by Albert (1992) as a way of understanding Everett's relative-state formulation of quantum mechanics. The basic idea is to try to account for an observer's beliefs by appealing to a type of illusion predicted by the bare theory. This paper responds to some recent objections to the bare theory by providing a more detailed description of the sense in which it can and the sense in which it cannot account (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations