Switch to: Citations

Add references

You must login to add references.
  1. Splittings.A. Kamburelis & B. W’Glorz - 1996 - Archive for Mathematical Logic 35 (4):263-277.
    We investigate some notions of splitting families and estimate sizes of the corresponding cardinal coefficients. In particular we solve a problem of P. Simon.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Forcing indestructibility of MAD families.Jörg Brendle & Shunsuke Yatabe - 2005 - Annals of Pure and Applied Logic 132 (2):271-312.
    Let A[ω]ω be a maximal almost disjoint family and assume P is a forcing notion. Say A is P-indestructible if A is still maximal in any P-generic extension. We investigate P-indestructibility for several classical forcing notions P. In particular, we provide a combinatorial characterization of P-indestructibility and, assuming a fragment of MA, we construct maximal almost disjoint families which are P-indestructible yet Q-destructible for several pairs of forcing notions . We close with a detailed investigation of iterated Sacks indestructibility.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Forcing with quotients.Michael Hrušák & Jindřich Zapletal - 2008 - Archive for Mathematical Logic 47 (7-8):719-739.
    We study an extensive connection between quotient forcings of Borel subsets of Polish spaces modulo a σ-ideal and quotient forcings of subsets of countable sets modulo an ideal.
    Download  
     
    Export citation  
     
    Bookmark   18 citations