Switch to: References

Add citations

You must login to add citations.
  1. Van Douwen’s diagram for dense sets of rationals.Jörg Brendle - 2006 - Annals of Pure and Applied Logic 143 (1-3):54-69.
    We investigate cardinal invariants related to the structure of dense sets of rationals modulo the nowhere dense sets. We prove that , thus dualizing the already known [B. Balcar, F. Hernández-Hernández, M. Hrušák, Combinatorics of dense subsets of the rationals, Fund. Math. 183 59–80, Theorem 3.6]. We also show the consistency of each of and . Our results answer four questions of Balcar, Hernández and Hrušák [B. Balcar, F. Hernández-Hernández, M. Hrušák, Combinatorics of dense subsets of the rationals, Fund. Math. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Dualization of the Van Douwen Diagram.Jacek Cichoń, Adam Krawczyk, Barbara Majcher-Iwanow & Bogdan Wȩglorz - 2000 - Journal of Symbolic Logic 65 (2):959-968.
    We make a more systematic study of the van Douwen diagram for cardinal coefficients related to combinatorial properties of partitions of natural numbers.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Properties of ideals on the generalized Cantor spaces.Jan Kraszewski - 2001 - Journal of Symbolic Logic 66 (3):1303-1320.
    We define a class of productive σ-ideals of subsets of the Cantor space 2 ω and observe that both σ-ideals of meagre sets and of null sets are in this class. From every productive σ-ideal I we produce a σ-ideal I κ , of subsets of the generalized Cantor space 2 κ . In particular, starting from meagre sets and null sets in 2 ω we obtain meagre sets and null sets in 2 κ , respectively. Then we investigate additivity, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Partition numbers.Otmar Spinas - 1997 - Annals of Pure and Applied Logic 90 (1-3):243-262.
    We continue [21] and study partition numbers of partial orderings which are related to /fin. In particular, we investigate Pf, be the suborder of /fin)ω containing only filtered elements, the Mathias partial order M, and , ω the lattice of partitions of ω, respectively. We show that Solomon's inequality holds for M and that it consistently fails for Pf. We show that the partition number of is C. We also show that consistently the distributivity number of ω is smaller than (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Around splitting and reaping for partitions of ω.Hiroaki Minami - 2010 - Archive for Mathematical Logic 49 (4):501-518.
    We investigate splitting number and reaping number for the structure (ω) ω of infinite partitions of ω. We prove that ${\mathfrak{r}_{d}\leq\mathsf{non}(\mathcal{M}),\mathsf{non}(\mathcal{N}),\mathfrak{d}}$ and ${\mathfrak{s}_{d}\geq\mathfrak{b}}$ . We also show the consistency results ${\mathfrak{r}_{d} > \mathfrak{b}, \mathfrak{s}_{d} < \mathfrak{d}, \mathfrak{s}_{d} < \mathfrak{r}, \mathfrak{r}_{d} < \mathsf{add}(\mathcal{M})}$ and ${\mathfrak{s}_{d} > \mathsf{cof}(\mathcal{M})}$ . To prove the consistency ${\mathfrak{r}_{d} < \mathsf{add}(\mathcal{M})}$ and ${\mathfrak{s}_{d} < \mathsf{cof}(\mathcal{M})}$ we introduce new cardinal invariants ${\mathfrak{r}_{pair}}$ and ${\mathfrak{s}_{pair}}$ . We also study the relation between ${\mathfrak{r}_{pair}, \mathfrak{s}_{pair}}$ and other cardinal invariants. We show (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Cohen-stable families of subsets of integers.Milos Kurilic - 2001 - Journal of Symbolic Logic 66 (1):257-270.
    A maximal almost disjoint (mad) family $\mathscr{A} \subseteq [\omega]^\omega$ is Cohen-stable if and only if it remains maximal in any Cohen generic extension. Otherwise it is Cohen-unstable. It is shown that a mad family, A, is Cohen-unstable if and only if there is a bijection G from ω to the rationals such that the sets G[A], A ∈A are nowhere dense. An ℵ 0 -mad family, A, is a mad family with the property that given any countable family $\mathscr{B} \subset (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Products of Menger spaces: A combinatorial approach.Piotr Szewczak & Boaz Tsaban - 2017 - Annals of Pure and Applied Logic 168 (1):1-18.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Template iterations with non-definable ccc forcing notions.Diego A. Mejía - 2015 - Annals of Pure and Applied Logic 166 (11):1071-1109.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Analytic and coanalytic families of almost disjoint functions.Bart Kastermans, Juris Steprāns & Yi Zhang - 2008 - Journal of Symbolic Logic 73 (4):1158-1172.
    If F ⊆ NN is an analytic family of pairwise eventually different functions then the following strong maximality condition fails: For any countable H ⊆ NN. no member of which is covered by finitely many functions from F, there is f ∈ F such that for all h ∈ H there are infinitely many integers k such that f(k) = h(k). However if V = L then there exists a coanalytic family of pairwise eventually different functions satisfying this strong maximality (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Generic existence of mad families.Osvaldo Guzmán-gonzález, Michael Hrušák, Carlos Azarel Martínez-Ranero & Ulises Ariet Ramos-garcía - 2017 - Journal of Symbolic Logic 82 (1):303-316.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • 1998 European Summer Meeting of the Association for Symbolic Logic.S. Buss - 1999 - Bulletin of Symbolic Logic 5 (1):59-153.
    Download  
     
    Export citation  
     
    Bookmark  
  • Small cardinals and small Efimov spaces.Will Brian & Alan Dow - 2022 - Annals of Pure and Applied Logic 173 (1):103043.
    Download  
     
    Export citation  
     
    Bookmark   3 citations