Switch to: Citations

Add references

You must login to add references.
  1. Wittgenstein on Rules and Private Language. An Elementary Exposition.Saul A. Kripke - 1983 - Philosophical Quarterly 33 (133):398-404.
    Download  
     
    Export citation  
     
    Bookmark   141 citations  
  • Toward the Limits of the Tennenbaum Phenomenon.Paola D'Aquino - 1997 - Notre Dame Journal of Formal Logic 38 (1):81-92.
    We consider the theory and its weak fragments in the language of arithmetic expanded with the functional symbol . We prove that and its weak fragments, down to and , are subject to the Tennenbaum phenomenon with respect to , , and . For the last two theories it is still unknown if they may have nonstandard recursive models in the usual language of arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the complexity of models of arithmetic.Kenneth McAloon - 1982 - Journal of Symbolic Logic 47 (2):403-415.
    Let P 0 be the subsystem of Peano arithmetic obtained by restricting induction to bounded quantifier formulas. Let M be a countable, nonstandard model of P 0 whose domain we suppose to be the standard integers. Let T be a recursively enumerable extension of Peano arithmetic all of whose existential consequences are satisfied in the standard model. Then there is an initial segment M ' of M which is a model of T such that the complete diagram of M ' (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • First published 1953.Ludvig Wittgenstein - forthcoming - Philosophical Investigations.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Foundations without Foundationalism: A Case for Second-Order Logic.Gila Sher - 1994 - Philosophical Review 103 (1):150.
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • How we learn mathematical language.Vann McGee - 1997 - Philosophical Review 106 (1):35-68.
    Mathematical realism is the doctrine that mathematical objects really exist, that mathematical statements are either determinately true or determinately false, and that the accepted mathematical axioms are predominantly true. A realist understanding of set theory has it that when the sentences of the language of set theory are understood in their standard meaning, each sentence has a determinate truth value, so that there is a fact of the matter whether the cardinality of the continuum is א2 or whether there are (...)
    Download  
     
    Export citation  
     
    Bookmark   101 citations