Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)Why Do We Prove Theorems?Yehuda Rav - 1999 - Philosophia Mathematica 7 (1):5-41.
    Ordinary mathematical proofs—to be distinguished from formal derivations—are the locus of mathematical knowledge. Their epistemic content goes way beyond what is summarised in the form of theorems. Objections are raised against the formalist thesis that every mainstream informal proof can be formalised in some first-order formal system. Foundationalism is at the heart of Hilbert's program and calls for methods of formal logic to prove consistency. On the other hand, ‘systemic cohesiveness’, as proposed here, seeks to explicate why mathematical knowledge is (...)
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • The derivation-indicator view of mathematical practice.Jody Azzouni - 2004 - Philosophia Mathematica 12 (2):81-106.
    The form of nominalism known as 'mathematical fictionalism' is examined and found wanting, mainly on grounds that go back to an early antinominalist work of Rudolf Carnap that has unfortunately not been paid sufficient attention by more recent writers.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • The epistemic significance of valid inference.Dag Prawitz - 2012 - Synthese 187 (3):887-898.
    The traditional picture of logic takes it for granted that "valid arguments have a fundamental epistemic significance", but neither model theory nor traditional proof theory dealing with formal system has been able to give an account of this significance. Since valid arguments as usually understood do not in general have any epistemic significance, the problem is to explain how and why we can nevertheless use them sometimes to acquire knowledge. It is suggested that we should distinguish between arguments and acts (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Intentional gaps in mathematical proofs.Don Fallis - 2003 - Synthese 134 (1-2):45 - 69.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Informal proofs and mathematical rigour.Marianna Antonutti Marfori - 2010 - Studia Logica 96 (2):261-272.
    The aim of this paper is to provide epistemic reasons for investigating the notions of informal rigour and informal provability. I argue that the standard view of mathematical proof and rigour yields an implausible account of mathematical knowledge, and falls short of explaining the success of mathematical practice. I conclude that careful consideration of mathematical practice urges us to pursue a theory of informal provability.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Assertion, inference, and consequence.Peter Pagin - 2012 - Synthese 187 (3):869 - 885.
    In this paper the informativeness account of assertion (Pagin in Assertion. Oxford University Press, Oxford, 2011) is extended to account for inference. I characterize the conclusion of an inference as asserted conditionally on the assertion of the premises. This gives a notion of conditional assertion (distinct from the standard notion related to the affirmation of conditionals). Validity and logical validity of an inference is characterized in terms of the application of method that preserves informativeness, and contrasted with consequence and logical (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Mathematical rigor--who needs it?Philip Kitcher - 1981 - Noûs 15 (4):469-493.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • (1 other version)Why Do We Prove Theorems?Yehuda Rav - 1998 - Philosophia Mathematica 6 (3):5-41.
    Ordinary mathematical proofs—to be distinguished from formal derivations—are the locus of mathematical knowledge. Their epistemic content goes way beyond what is summarised in the form of theorems. Objections are raised against the formalist thesis that every mainstream informal proof can be formalised in some first-order formal system. Foundationalism is at the heart of Hilbert's program and calls for methods of formal logic to prove consistency. On the other hand, ‘systemic cohesiveness’, as proposed here, seeks to explicate why mathematical knowledge is (...)
    Download  
     
    Export citation  
     
    Bookmark   88 citations