Switch to: References

Add citations

You must login to add citations.
  1. Objects and Processes in Mathematical Practice.Uwe V. Riss - 2011 - Foundations of Science 16 (4):337-351.
    In this paper it is argued that the fundamental difference of the formal and the informal position in the philosophy of mathematics results from the collision of an object and a process centric perspective towards mathematics. This collision can be overcome by means of dialectical analysis, which shows that both perspectives essentially depend on each other. This is illustrated by the example of mathematical proof and its formal and informal nature. A short overview of the employed materialist dialectical approach is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Informal proofs and mathematical rigour.Marianna Antonutti Marfori - 2010 - Studia Logica 96 (2):261-272.
    The aim of this paper is to provide epistemic reasons for investigating the notions of informal rigour and informal provability. I argue that the standard view of mathematical proof and rigour yields an implausible account of mathematical knowledge, and falls short of explaining the success of mathematical practice. I conclude that careful consideration of mathematical practice urges us to pursue a theory of informal provability.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Proofs, pictures, and Euclid.John Mumma - 2010 - Synthese 175 (2):255 - 287.
    Though pictures are often used to present mathematical arguments, they are not typically thought to be an acceptable means for presenting mathematical arguments rigorously. With respect to the proofs in the Elements in particular, the received view is that Euclid's reliance on geometric diagrams undermines his efforts to develop a gap-free deductive theory. The central difficulty concerns the generality of the theory. How can inferences made from a particular diagrams license general mathematical results? After surveying the history behind the received (...)
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • Why do we believe theorems?Andrzej Pelc - 2009 - Philosophia Mathematica 17 (1):84-94.
    The formalist point of view maintains that formal derivations underlying proofs, although usually not carried out in practice, contribute to the confidence in mathematical theorems. Opposing this opinion, the main claim of the present paper is that such a gain of confidence obtained from any link between proofs and formal derivations is, even in principle, impossible in the present state of knowledge. Our argument is based on considerations concerning length of formal derivations. Thanks to Jody Azzouni for enlightening discussions concerning (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Mathematical engineering and mathematical change.Jean-Pierre Marquis - 1999 - International Studies in the Philosophy of Science 13 (3):245 – 259.
    In this paper, I introduce and examine the notion of “mathematical engineering” and its impact on mathematical change. Mathematical engineering is an important part of contemporary mathematics and it roughly consists of the “construction” and development of various machines, probes and instruments used in numerous mathematical fields. As an example of such constructions, I briefly present the basic steps and properties of homology theory. I then try to show that this aspect of contemporary mathematics has important consequences on our conception (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Moral particularism and scientific practice.Brendan Larvor - 2008 - Metaphilosophy 39 (4-5):492-507.
    Abstract: Particularism is usually understood as a position in moral philosophy. In fact, it is a view about all reasons, not only moral reasons. Here, I show that particularism is a familiar and controversial position in the philosophy of science and mathematics. I then argue for particularism with respect to scientific and mathematical reasoning. This has a bearing on moral particularism, because if particularism about moral reasons is true, then particularism must be true with respect to reasons of any sort, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Why do informal proofs conform to formal norms?Jody Azzouni - 2009 - Foundations of Science 14 (1-2):9-26.
    Kant discovered a philosophical problem with mathematical proof. Despite being a priori , its methodology involves more than analytic truth. But what else is involved? This problem is widely taken to have been solved by Frege’s extension of logic beyond its restricted (and largely Aristotelian) form. Nevertheless, a successor problem remains: both traditional and contemporary (classical) mathematical proofs, although conforming to the norms of contemporary (classical) logic, never were, and still aren’t, executed by mathematicians in a way that transparently reveals (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Philosophy of mathematics.Leon Horsten - 2008 - Stanford Encyclopedia of Philosophy.
    If mathematics is regarded as a science, then the philosophy of mathematics can be regarded as a branch of the philosophy of science, next to disciplines such as the philosophy of physics and the philosophy of biology. However, because of its subject matter, the philosophy of mathematics occupies a special place in the philosophy of science. Whereas the natural sciences investigate entities that are located in space and time, it is not at all obvious that this is also the case (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • A Critique of a Formalist-Mechanist Version of the Justification of Arguments in Mathematicians' Proof Practices.Yehuda Rav - 2007 - Philosophia Mathematica 15 (3):291-320.
    In a recent article, Azzouni has argued in favor of a version of formalism according to which ordinary mathematical proofs indicate mechanically checkable derivations. This is taken to account for the quasi-universal agreement among mathematicians on the validity of their proofs. Here, the author subjects these claims to a critical examination, recalls the technical details about formalization and mechanical checking of proofs, and illustrates the main argument with aanalysis of examples. In the author's view, much of mathematical reasoning presents genuine (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • What is dialectical philosophy of mathematics?Brendan Larvor - 2001 - Philosophia Mathematica 9 (2):212-229.
    The late Imre Lakatos once hoped to found a school of dialectical philosophy of mathematics. The aim of this paper is to ask what that might possibly mean. But Lakatos's philosophy has serious shortcomings. The paper elaborates a conception of dialectical philosophy of mathematics that repairs these defects and considers the work of three philosophers who in some measure fit the description: Yehuda Rav, Mary Leng and David Corfield.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Why do mathematicians re-prove theorems?John W. Dawson Jr - 2006 - Philosophia Mathematica 14 (3):269-286.
    From ancient times to the present, the discovery and presentation of new proofs of previously established theorems has been a salient feature of mathematical practice. Why? What purposes are served by such endeavors? And how do mathematicians judge whether two proofs of the same theorem are essentially different? Consideration of such questions illuminates the roles that proofs play in the validation and communication of mathematical knowledge and raises issues that have yet to be resolved by mathematical logicians. The Appendix, in (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Signs as a Theme in the Philosophy of Mathematical Practice.David Waszek - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer.
    Why study notations, diagrams, or more broadly the variety of nonverbal “representations” or “signs” that are used in mathematical practice? This chapter maps out recent work on the topic by distinguishing three main philosophical motivations for doing so. First, some work (like that on diagrammatic reasoning) studies signs to recover norms of informal or historical mathematical practices that would get lost if the particular signs that these practices rely on were translated away; work in this vein has the potential to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Informal provability and dialetheism.Pawel Pawlowski & Rafal Urbaniak - 2023 - Theoria 89 (2):204-215.
    According to the dialetheist argument from the inconsistency of informal mathematics, the informal version of the Gödelian argument leads us to a true contradiction. On one hand, the dialetheist argues, we can prove that there is a mathematical claim that is neither provable nor refutable in informal mathematics. On the other, the proof of its unprovability is given in informal mathematics and proves that very sentence. We argue that the argument fails, because it relies on the unjustified and unlikely assumption (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Logic of informal provability with truth values.Pawel Pawlowski & Rafal Urbaniak - 2023 - Logic Journal of the IGPL 31 (1):172-193.
    Classical logic of formal provability includes Löb’s theorem, but not reflection. In contrast, intuitions about the inferential behavior of informal provability (in informal mathematics) seem to invalidate Löb’s theorem and validate reflection (after all, the intuition is, whatever mathematicians prove holds!). We employ a non-deterministic many-valued semantics and develop a modal logic T-BAT of an informal provability operator, which indeed does validate reflection and invalidates Löb’s theorem. We study its properties and its relation to known provability-related paradoxical arguments. We also (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Rigour and Thought Experiments: Burgess and Norton.James Robert Brown - 2022 - Axiomathes 32 (1):7-28.
    This article discusses the important and influential views of John Burgess on the nature of mathematical rigour and John Norton on the nature of thought experiments. Their accounts turn out to be surprisingly similar in spite of different subject matters. Among other things both require a reconstruction of the initial proof or thought experiment in order to officially evaluate them, even though we almost never do this in practice. The views of each are plausible and seem to solve interesting problems. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Group Knowledge and Mathematical Collaboration: A Philosophical Examination of the Classification of Finite Simple Groups.Joshua Habgood-Coote & Fenner Stanley Tanswell - 2023 - Episteme 20 (2):281-307.
    In this paper we apply social epistemology to mathematical proofs and their role in mathematical knowledge. The most famous modern collaborative mathematical proof effort is the Classification of Finite Simple Groups. The history and sociology of this proof have been well-documented by Alma Steingart (2012), who highlights a number of surprising and unusual features of this collaborative endeavour that set it apart from smaller-scale pieces of mathematics. These features raise a number of interesting philosophical issues, but have received very little (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Groundwork for a Fallibilist Account of Mathematics.Silvia De Toffoli - 2021 - Philosophical Quarterly 7 (4):823-844.
    According to the received view, genuine mathematical justification derives from proofs. In this article, I challenge this view. First, I sketch a notion of proof that cannot be reduced to deduction from the axioms but rather is tailored to human agents. Secondly, I identify a tension between the received view and mathematical practice. In some cases, cognitively diligent, well-functioning mathematicians go wrong. In these cases, it is plausible to think that proof sets the bar for justification too high. I then (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Rigour and Proof.Oliver Tatton-Brown - 2023 - Review of Symbolic Logic 16 (2):480-508.
    This paper puts forward a new account of rigorous mathematical proof and its epistemology. One novel feature is a focus on how the skill of reading and writing valid proofs is learnt, as a way of understanding what validity itself amounts to. The account is used to address two current questions in the literature: that of how mathematicians are so good at resolving disputes about validity, and that of whether rigorous proofs are necessarily formalizable.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Reconciling Rigor and Intuition.Silvia De Toffoli - 2020 - Erkenntnis 86 (6):1783-1802.
    Criteria of acceptability for mathematical proofs are field-dependent. In topology, though not in most other domains, it is sometimes acceptable to appeal to visual intuition to support inferential steps. In previous work :829–842, 2014; Lolli, Panza, Venturi From logic to practice, Springer, Berlin, 2015; Larvor Mathematical cultures, Springer, Berlin, 2016) my co-author and I aimed at spelling out how topological proofs work on their own terms, without appealing to formal proofs which might be associated with them. In this article, I (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Using corpus linguistics to investigate mathematical explanation.Juan Pablo Mejía Ramos, Lara Alcock, Kristen Lew, Paolo Rago, Chris Sangwin & Matthew Inglis - 2019 - In Eugen Fischer & Mark Curtis (eds.), Methodological Advances in Experimental Philosophy. London: Bloomsbury Press. pp. 239–263.
    In this chapter we use methods of corpus linguistics to investigate the ways in which mathematicians describe their work as explanatory in their research papers. We analyse use of the words explain/explanation (and various related words and expressions) in a large corpus of texts containing research papers in mathematics and in physical sciences, comparing this with their use in corpora of general, day-to-day English. We find that although mathematicians do use this family of words, such use is considerably less prevalent (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Notion of Explanation in Gödel’s Philosophy of Mathematics.Krzysztof Wójtowicz - 2019 - Studia Semiotyczne—English Supplement 30:85-106.
    The article deals with the question of in which sense the notion of explanation can be applied to Kurt Gödel’s philosophy of mathematics. Gödel, as a mathematical realist, claims that in mathematics we are dealing with facts that have an objective character. One of these facts is the solvability of all well-formulated mathematical problems—and this fact requires a clarification. The assumptions on which Gödel’s position is based are: metaphysical realism: there is a mathematical universe, it is objective and independent of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Philosophy of mathematical practice: A primer for mathematics educators.Yacin Hamami & Rebecca Morris - 2020 - ZDM Mathematics Education 52:1113–1126.
    In recent years, philosophical work directly concerned with the practice of mathematics has intensified, giving rise to a movement known as the philosophy of mathematical practice . In this paper we offer a survey of this movement aimed at mathematics educators. We first describe the core questions philosophers of mathematical practice investigate as well as the philosophical methods they use to tackle them. We then provide a selective overview of work in the philosophy of mathematical practice covering topics including the (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Demostraciones «tópicamente puras» en la práctica matemática: un abordaje elucidatorio.Guillermo Nigro Puente - 2020 - Dissertation, Universidad de la República Uruguay
    Download  
     
    Export citation  
     
    Bookmark  
  • Maddy On The Multiverse.Claudio Ternullo - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 43-78.
    Penelope Maddy has recently addressed the set-theoretic multiverse, and expressed reservations on its status and merits ([Maddy, 2017]). The purpose of the paper is to examine her concerns, by using the interpretative framework of set-theoretic naturalism. I first distinguish three main forms of 'multiversism', and then I proceed to analyse Maddy's concerns. Among other things, I take into account salient aspects of multiverse-related mathematics , in particular, research programmes in set theory for which the use of the multiverse seems to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Reliability of mathematical inference.Jeremy Avigad - 2020 - Synthese 198 (8):7377-7399.
    Of all the demands that mathematics imposes on its practitioners, one of the most fundamental is that proofs ought to be correct. It has been common since the turn of the twentieth century to take correctness to be underwritten by the existence of formal derivations in a suitable axiomatic foundation, but then it is hard to see how this normative standard can be met, given the differences between informal proofs and formal derivations, and given the inherent fragility and complexity of (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Evidence, Proofs, and Derivations.Andrew Aberdein - 2019 - ZDM 51 (5):825-834.
    The traditional view of evidence in mathematics is that evidence is just proof and proof is just derivation. There are good reasons for thinking that this view should be rejected: it misrepresents both historical and current mathematical practice. Nonetheless, evidence, proof, and derivation are closely intertwined. This paper seeks to tease these concepts apart. It emphasizes the role of argumentation as a context shared by evidence, proofs, and derivations. The utility of argumentation theory, in general, and argumentation schemes, in particular, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The role of syntactic representations in set theory.Keith Weber - 2019 - Synthese 198 (Suppl 26):6393-6412.
    In this paper, we explore the role of syntactic representations in set theory. We highlight a common inferential scheme in set theory, which we call the Syntactic Representation Inferential Scheme, in which the set theorist infers information about a concept based on the way that concept can be represented syntactically. However, the actual syntactic representation is only indicated, not explicitly provided. We consider this phenomenon in relation to the derivation indicator position that asserts that the ordinary proofs given in mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Euler’s Königsberg: the explanatory power of mathematics.Tim Räz - 2018 - European Journal for Philosophy of Science 8 (3):331-346.
    The present paper provides an analysis of Euler’s solutions to the Königsberg bridges problem. Euler proposes three different solutions to the problem, addressing their strengths and weaknesses along the way. I put the analysis of Euler’s paper to work in the philosophical discussion on mathematical explanations. I propose that the key ingredient to a good explanation is the degree to which it provides relevant information. Providing relevant information is based on knowledge of the structure in question, graphs in the present (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Inferentialism and Structuralism: A Tale of Two Theories.Ryan Mark Nefdt - 2018 - Logique Et Analyse 61 (244):489-512.
    This paper aims to unite two seemingly disparate themes in the philosophy of mathematics and language respectively, namely ante rem structuralism and inferentialism. My analysis begins with describing both frameworks in accordance with their genesis in the work of Hilbert. I then draw comparisons between these philosophical views in terms of their similar motivations and similar objections to the referential orthodoxy. I specifically home in on two points of comparison, namely the role of norms and the relation of ontological dependence (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Informal proof, formal proof, formalism.Alan Weir - 2016 - Review of Symbolic Logic 9 (1):23-43.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Proof systems for BAT consequence relations.Pawel Pawlowski - 2018 - Logic Journal of the IGPL 26 (1):96-108.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematical Inference and Logical Inference.Yacin Hamami - 2018 - Review of Symbolic Logic 11 (4):665-704.
    The deviation of mathematical proof—proof in mathematical practice—from the ideal of formal proof—proof in formal logic—has led many philosophers of mathematics to reconsider the commonly accepted view according to which the notion of formal proof provides an accurate descriptive account of mathematical proof. This, in turn, has motivated a search for alternative accounts of mathematical proof purporting to be more faithful to the reality of mathematical practice. Yet, in order to develop and evaluate such alternative accounts, it appears as a (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Euler’s Königsberg: the explanatory power of mathematics.Tim Räz - 2017 - European Journal for Philosophy of Science 8:331–46.
    The present paper provides an analysis of Euler’s solutions to the Königsberg bridges problem. Euler proposes three different solutions to the problem, addressing their strengths and weaknesses along the way. I put the analysis of Euler’s paper to work in the philosophical discussion on mathematical explanations. I propose that the key ingredient to a good explanation is the degree to which it provides relevant information. Providing relevant information is based on knowledge of the structure in question, graphs in the present (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Mathematical Knowledge : Motley and Complexity of Proof.Akihiro Kanamori - 2013 - Annals of the Japan Association for Philosophy of Science 21:21-35.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Why the Naïve Derivation Recipe Model Cannot Explain How Mathematicians’ Proofs Secure Mathematical Knowledge.Brendan Larvor - 2016 - Philosophia Mathematica 24 (3):401-404.
    The view that a mathematical proof is a sketch of or recipe for a formal derivation requires the proof to function as an argument that there is a suitable derivation. This is a mathematical conclusion, and to avoid a regress we require some other account of how the proof can establish it.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Formalizability and Knowledge Ascriptions in Mathematical Practice.Eva Müller-Hill - 2009 - Philosophia Scientiae 13 (2):21-43.
    Nous examinons les conditions de vérité pour des attributions de savoir dans le cas des connaissances mathématiques. La disposition d’une démonstration formalisable semble être un critère naturel :(*) X sait que p est vrai si et seulement si X en principe dispose d’une démonstration formalisable pour p.La formalisabilité pourtant ne joue pas un grand rôle dans la pratique mathématique effective. Nous présentons des résultats d’une recherche empirique qui indiquent que les mathématiciens n’employent pas certaines spécifications de (*) quand ils attribuent (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • And so on... : reasoning with infinite diagrams.Solomon Feferman - 2012 - Synthese 186 (1):371-386.
    This paper presents examples of infinite diagrams whose use is more or less essential for understanding and accepting various proofs in higher mathematics. The significance of these is discussed with respect to the thesis that every proof can be formalized, and a “pre” form of this thesis that every proof can be presented in everyday statements-only form.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • A Problem with the Dependence of Informal Proofs on Formal Proofs.Fenner Tanswell - 2015 - Philosophia Mathematica 23 (3):295-310.
    Derivationists, those wishing to explain the correctness and rigour of informal proofs in terms of associated formal proofs, are generally held to be supported by the success of the project of translating informal proofs into computer-checkable formal counterparts. I argue, however, that this project is a false friend for the derivationists because there are too many different associated formal proofs for each informal proof, leading to a serious worry of overgeneration. I press this worry primarily against Azzouni's derivation-indicator account, but (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Non-deductive Logic in Mathematics: The Probability of Conjectures.James Franklin - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 11--29.
    Mathematicians often speak of conjectures, yet unproved, as probable or well-confirmed by evidence. The Riemann Hypothesis, for example, is widely believed to be almost certainly true. There seems no initial reason to distinguish such probability from the same notion in empirical science. Yet it is hard to see how there could be probabilistic relations between the necessary truths of pure mathematics. The existence of such logical relations, short of certainty, is defended using the theory of logical probability (or objective Bayesianism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Argument of Mathematics.Andrew Aberdein & Ian J. Dove (eds.) - 2013 - Dordrecht, Netherland: Springer.
    Written by experts in the field, this volume presents a comprehensive investigation into the relationship between argumentation theory and the philosophy of mathematical practice. Argumentation theory studies reasoning and argument, and especially those aspects not addressed, or not addressed well, by formal deduction. The philosophy of mathematical practice diverges from mainstream philosophy of mathematics in the emphasis it places on what the majority of working mathematicians actually do, rather than on mathematical foundations. -/- The book begins by first challenging the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On Mathematicians' Different Standards When Evaluating Elementary Proofs.Matthew Inglis, Juan Pablo Mejia-Ramos, Keith Weber & Lara Alcock - 2013 - Topics in Cognitive Science 5 (2):270-282.
    In this article, we report a study in which 109 research-active mathematicians were asked to judge the validity of a purported proof in undergraduate calculus. Significant results from our study were as follows: (a) there was substantial disagreement among mathematicians regarding whether the argument was a valid proof, (b) applied mathematicians were more likely than pure mathematicians to judge the argument valid, (c) participants who judged the argument invalid were more confident in their judgments than those who judged it valid, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Phenomenology and mathematical practice.Mary Leng - 2002 - Philosophia Mathematica 10 (1):3-14.
    A phenomenological approach to mathematical practice is sketched out, and some problems with this sort of approach are considered. The approach outlined takes mathematical practices as its data, and seeks to provide an empirically adequate philosophy of mathematics based on observation of these practices. Some observations are presented, based on two case studies of some research into the classification of C*-algebras. It is suggested that an anti-realist account of mathematics could be developed on the basis of these and other studies, (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Instructions and constructions in set theory proofs.Keith Weber - 2023 - Synthese 202 (2):1-17.
    Traditional models of mathematical proof describe proofs as sequences of assertion where each assertion is a claim about mathematical objects. However, Tanswell observed that in practice, many proofs do not follow these models. Proofs often contain imperatives, and other instructions for the reader to perform mathematical actions. The purpose of this paper is to examine the role of instructions in proofs by systematically analyzing how instructions are used in Kunen’s Set theory: An introduction to independence proofs, a widely used graduate (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Open texture, rigor, and proof.Benjamin Zayton - 2022 - Synthese 200 (4):1-20.
    Open texture is a kind of semantic indeterminacy first systematically studied by Waismann. In this paper, extant definitions of open texture will be compared and contrasted, with a view towards the consequences of open-textured concepts in mathematics. It has been suggested that these would threaten the traditional virtues of proof, primarily the certainty bestowed by proof-possession, and this suggestion will be critically investigated using recent work on informal proof. It will be argued that informal proofs have virtues that mitigate the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the unreasonable reliability of mathematical inference.Brendan Philip Larvor - 2022 - Synthese 200 (4):1-16.
    In, Jeremy Avigad makes a novel and insightful argument, which he presents as part of a defence of the ‘Standard View’ about the relationship between informal mathematical proofs and their corresponding formal derivations. His argument considers the various strategies by means of which mathematicians can write informal proofs that meet mathematical standards of rigour, in spite of the prodigious length, complexity and conceptual difficulty that some proofs exhibit. He takes it that showing that and how such strategies work is a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Mark of Understanding: In Defense of an Ability Account.Sven Delarivière & Bart Van Kerkhove - 2021 - Axiomathes 31 (5):619-648.
    Understanding is a valued trait in any epistemic practice, scientific or not. Yet, when it comes to characterizing its nature, the notion has not received the philosophical attention it deserves. We have set ourselves three tasks in this paper. First, we defend the importance of this endeavor. Second, we consider and criticize a number of proposals to this effect. Third, we defend an alternative account, focusing on abilities as the proper mark of understanding.
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical Explanation beyond Explanatory Proof.William D’Alessandro - 2017 - British Journal for the Philosophy of Science 71 (2):581-603.
    Much recent work on mathematical explanation has presupposed that the phenomenon involves explanatory proofs in an essential way. I argue that this view, ‘proof chauvinism’, is false. I then look in some detail at the explanation of the solvability of polynomial equations provided by Galois theory, which has often been thought to revolve around an explanatory proof. The article concludes with some general worries about the effects of chauvinism on the theory of mathematical explanation. 1Introduction 2Why I Am Not a (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Plans and planning in mathematical proofs.Yacin Hamami & Rebecca Lea Morris - 2020 - Review of Symbolic Logic 14 (4):1030-1065.
    In practice, mathematical proofs are most often the result of careful planning by the agents who produced them. As a consequence, each mathematical proof inherits a plan in virtue of the way it is produced, a plan which underlies its “architecture” or “unity”. This paper provides an account of plans and planning in the context of mathematical proofs. The approach adopted here consists in looking for these notions not in mathematical proofs themselves, but in the agents who produced them. The (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Rigour and Intuition.Oliver Tatton-Brown - 2019 - Erkenntnis 86 (6):1757-1781.
    This paper sketches an account of the standard of acceptable proof in mathematics—rigour—arguing that the key requirement of rigour in mathematics is that nontrivial inferences be provable in greater detail. This account is contrasted with a recent perspective put forward by De Toffoli and Giardino, who base their claims on a case study of an argument from knot theory. I argue that De Toffoli and Giardino’s conclusions are not supported by the case study they present, which instead is a very (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Motivated proofs: What they are, why they matter and how to write them.Rebecca Lea Morris - 2020 - Review of Symbolic Logic 13 (1):23-46.
    Mathematicians judge proofs to possess, or lack, a variety of different qualities, including, for example, explanatory power, depth, purity, beauty and fit. Philosophers of mathematical practice have begun to investigate the nature of such qualities. However, mathematicians frequently draw attention to another desirable proof quality: being motivated. Intuitively, motivated proofs contain no "puzzling" steps, but they have received little further analysis. In this paper, I begin a philosophical investigation into motivated proofs. I suggest that a proof is motivated if and (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations