Switch to: Citations

Add references

You must login to add references.
  1. Weak axioms of determinacy and subsystems of analysis II.Kazuyuki Tanaka - 1991 - Annals of Pure and Applied Logic 52 (1-2):181-193.
    In [10], we have shown that the statement that all ∑ 1 1 partitions are Ramsey is deducible over ATR 0 from the axiom of ∑ 1 1 monotone inductive definition,but the reversal needs П 1 1 - CA 0 rather than ATR 0 . By contrast, we show in this paper that the statement that all ∑ 0 2 games are determinate is also deducible over ATR 0 from the axiom of ∑ 1 1 monotone inductive definition, but the (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Subsystems of Second Order Arithmetic.Stephen G. Simpson - 1999 - Studia Logica 77 (1):129-129.
    Download  
     
    Export citation  
     
    Bookmark   237 citations  
  • [image] -Determinacy, Comprehension and Induction.Medyahya Ould Medsalem & Kazuyuki Tanaka - 2007 - Journal of Symbolic Logic 72 (2):452 - 462.
    We show that each of $\Delta _{3}^{1}-{\rm CA}_{0}+\Sigma _{3}^{1}-{\rm IND}$ and $\Pi _{2}^{1}-{\rm CA}_{0}+\Pi _{3}^{1}-{\rm TI}$ proves $\Delta _{3}^{0}-{\rm Det}$ and that neither $\Sigma _{3}^{1}-{\rm IND}$ nor $\Pi _{3}^{1}-{\rm TI}$ can be dropped. We also show that neither $\Delta _{3}^{1}-{\rm CA}_{0}+\Sigma _{\infty}^{1}-{\rm IND}$ nor $\Pi _{2}^{1}-{\rm CA}_{0}+\Pi _{\infty}^{1}-{\rm TI}$ proves $\Sigma _{3}^{0}-{\rm Det}$. Moreover, we prove that none of $\Delta _{2}^{1}-{\rm CA}_{0}$, $\Sigma _{3}^{1}-{\rm IND}$ and $\Pi _{2}^{1}-{\rm TI}$ is provable in $\Delta _{1}^{1}-{\rm Det}_{0}={\rm ACA}_{0}+\Delta _{1}^{1}-{\rm Det}$.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Δ 0 3 -determinacy, comprehension and induction.MedYahya Ould MedSalem & Kazuyuki Tanaka - 2007 - Journal of Symbolic Logic 72 (2):452-462.
    We show that each of Δ13-CA0 + Σ13-IND and Π12-CA0 + Π13-TI proves Δ03-Det and that neither Σ31-IND nor Π13-TI can be dropped. We also show that neither Δ13-CA0 + Σ1∞-IND nor Π12-CA0 + Π1∞-TI proves Σ03-Det. Moreover, we prove that none of Δ21-CA0, Σ31-IND and Π21-TI is provable in Δ11-Det0 = ACA0 + Δ11-Det.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Subsystems of Second Order Arithmetic.Stephen George Simpson - 1998 - Springer Verlag.
    Stephen George Simpson. with definition 1.2.3 and the discussion following it. For example, taking 90(n) to be the formula n §E Y, we have an instance of comprehension, VYEIXVn(n€X<—>n¢Y), asserting that for any given set Y there exists a ...
    Download  
     
    Export citation  
     
    Bookmark   131 citations