Switch to: Citations

Add references

You must login to add references.
  1. Characterizations of the class Δ ta 2 over Euclidean spaces.Armin Hemmerling - 2004 - Mathematical Logic Quarterly 50 (4):507-519.
    We present some characterizations of the members of Δta2, that class of the topological arithmetical hierarchy which is just large enough to include several fundamental types of sets of points in Euclidean spaces ℝk. The limit characterization serves as a basic tool in further investigations. The characterization by effective difference chains of effectively exhaustible sets yields only a hierarchy within a subfield of Δta2. Effective difference chains of transfinite (but constructive) order types, consisting of complements of effectively exhaustible sets, as (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Classical recursion theory: the theory of functions and sets of natural numbers.Piergiorgio Odifreddi - 1989 - New York, N.Y., USA: Sole distributors for the USA and Canada, Elsevier Science Pub. Co..
    Volume II of Classical Recursion Theory describes the universe from a local (bottom-up or synthetical) point of view, and covers the whole spectrum, from the recursive to the arithmetical sets. The first half of the book provides a detailed picture of the computable sets from the perspective of Theoretical Computer Science. Besides giving a detailed description of the theories of abstract Complexity Theory and of Inductive Inference, it contributes a uniform picture of the most basic complexity classes, ranging from small (...)
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • Recursive Structures and Ershov's Hierarchy.Christopher J. Ash & Julia F. Knight - 1996 - Mathematical Logic Quarterly 42 (1):461-468.
    Ash and Nerode [2] gave natural definability conditions under which a relation is intrinsically r. e. Here we generalize this to arbitrary levels in Ershov's hierarchy of Δmath image sets, giving conditions under which a relation is intrinsically α-r. e.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Approximate decidability in euclidean spaces.Armin Hemmerling - 2003 - Mathematical Logic Quarterly 49 (1):34-56.
    We study concepts of decidability for subsets of Euclidean spaces ℝk within the framework of approximate computability . A new notion of approximate decidability is proposed and discussed in some detail. It is an effective variant of F. Hausdorff's concept of resolvable sets, and it modifies and generalizes notions of recursivity known from computable analysis, formerly used for open or closed sets only, to more general types of sets. Approximate decidability of sets can equivalently be expressed by computability of the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Descriptive Set Theory.Yiannis Nicholas Moschovakis - 1982 - Studia Logica 41 (4):429-430.
    Download  
     
    Export citation  
     
    Bookmark   162 citations