Switch to: Citations

Add references

You must login to add references.
  1. Zur Deutung der intuitionistischen Logik.A. N. Kolmogorov - 1932 - Mathematische Zeitschrift 35:58-65.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Mass Problems and Intuitionism.Stephen G. Simpson - 2008 - Notre Dame Journal of Formal Logic 49 (2):127-136.
    Let $\mathcal{P}_w$ be the lattice of Muchnik degrees of nonempty $\Pi^0_1$ subsets of $2^\omega$. The lattice $\mathcal{P}$ has been studied extensively in previous publications. In this note we prove that the lattice $\mathcal{P}$ is not Brouwerian.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Medvedev lattice of computably closed sets.Sebastiaan A. Terwijn - 2006 - Archive for Mathematical Logic 45 (2):179-190.
    Simpson introduced the lattice of Π0 1 classes under Medvedev reducibility. Questions regarding completeness in are related to questions about measure and randomness. We present a solution to a question of Simpson about Medvedev degrees of Π0 1 classes of positive measure that was independently solved by Simpson and Slaman. We then proceed to discuss connections to constructive logic. In particular we show that the dual of does not allow an implication operator (i.e. that is not a Heyting algebra). We (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Mass problems and randomness.Stephen G. Simpson - 2005 - Bulletin of Symbolic Logic 11 (1):1-27.
    A mass problem is a set of Turing oracles. If P and Q are mass problems, we say that P is weakly reducible to Q if every member of Q Turing computes a member of P. We say that P is strongly reducible to Q if every member of Q Turing computes a member of P via a fixed Turing functional. The weak degrees and strong degrees are the equivalence classes of mass problems under weak and strong reducibility, respectively. We (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Some remarks on the algebraic structure of the Medvedev lattice.Andrea Sorbi - 1990 - Journal of Symbolic Logic 55 (2):831-853.
    This paper investigates the algebraic structure of the Medvedev lattice M. We prove that M is not a Heyting algebra. We point out some relations between M and the Dyment lattice and the Mucnik lattice. Some properties of the degrees of enumerability are considered. We give also a result on embedding countable distributive lattices in the Medvedev lattice.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • (1 other version)Some Quotient Lattices of the Medvedev Lattice.Andrea Sorbi - 1991 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 37 (9-12):167-182.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Intermediate logics and factors of the Medvedev lattice.Andrea Sorbi & Sebastiaan A. Terwijn - 2008 - Annals of Pure and Applied Logic 155 (2):69-85.
    We investigate the initial segments of the Medvedev lattice as Brouwer algebras, and study the propositional logics connected to them.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Some Quotient Lattices of the Medvedev Lattice.Andrea Sorbi - 1991 - Mathematical Logic Quarterly 37 (9‐12):167-182.
    Download  
     
    Export citation  
     
    Bookmark   9 citations