Switch to: Citations

Add references

You must login to add references.
  1. Informal Rigour and Completeness Proofs.Georg Kreisel - 1967 - In Imre Lakatos (ed.), Problems in the philosophy of mathematics. Amsterdam,: North-Holland Pub. Co.. pp. 138--157.
    Download  
     
    Export citation  
     
    Bookmark   172 citations  
  • (1 other version)A logical analysis of some value concepts.Frederic Fitch - 1963 - Journal of Symbolic Logic 28 (2):135-142.
    Download  
     
    Export citation  
     
    Bookmark   235 citations  
  • Content preservation.Tyler Burge - 1993 - Philosophical Review 102 (4):457-488.
    Download  
     
    Export citation  
     
    Bookmark   605 citations  
  • (4 other versions)Two Dogmas of Empiricism.W. V. O. Quine - 2011 - In Robert B. Talisse & Scott F. Aikin (eds.), The Pragmatism Reader: From Peirce Through the Present. Princeton University Press. pp. 202-220.
    Download  
     
    Export citation  
     
    Bookmark   922 citations  
  • Two Dogmas of Empiricism.W. Quine - 1951 - [Longmans, Green].
    Download  
     
    Export citation  
     
    Bookmark   1215 citations  
  • Epistemic and intuitionistic formal systems.R. C. Flagg & H. Friedman - 1986 - Annals of Pure and Applied Logic 32:53-60.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Church's thesis and the ideal of informal rigour.Georg Kreisel - 1987 - Notre Dame Journal of Formal Logic 28 (4):499-519.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Epistemic theories and the interpretation of gödel's incompleteness theorems.William N. Reinhardt - 1986 - Journal of Philosophical Logic 15 (4):427--74.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Absolute versions of incompleteness theorems.William N. Reinhardt - 1985 - Noûs 19 (3):317-346.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Truth of a proposition, evidence of a judgement, validity of a proof.Per Martin-Löf - 1987 - Synthese 73 (3):407 - 420.
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • Some remarks on the notion of proof.John Myhill - 1960 - Journal of Philosophy 57 (14):461-471.
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • (1 other version)A logical analysis of some value concepts.Frederic B. Fitch - 2008 - In Joe Salerno (ed.), New Essays on the Knowability Paradox. Oxford, England and New York, NY, USA: Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Epistemic arithmetic is a conservative extension of intuitionistic arithmetic.Nicolas D. Goodman - 1984 - Journal of Symbolic Logic 49 (1):192-203.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Frege’s Foundations and Intuitionistic Logic.G. Kreisel - 1984 - The Monist 67 (1):72-91.
    Summary. This article develops two principal points. First, the so-called rivals of logical foundations, associated with Zermelo, Hilbert, and Brouwer, are here regarded as variants; specifically: to simplify, refine, resp. extend Frege’s scheme. Each of the variations is seen as a special case of a familiar strategy in the pursuit of knowledge. In particular, the extension provided by Brouwer’s intuitionistic logic concerns the class of propositions considered: about incompletely defined objects such as choice sequences. In contrast, Frege or, for that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Flagg realizability in arithmetic.Nicolas D. Goodman - 1986 - Journal of Symbolic Logic 51 (2):387-392.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The equivalence of the disjunction and existence properties for modal arithmetic.Harvey Friedman & Michael Sheard - 1989 - Journal of Symbolic Logic 54 (4):1456-1459.
    In a modal system of arithmetic, a theory S has the modal disjunction property if whenever $S \vdash \square\varphi \vee \square\psi$ , either $S \vdash \square\varphi$ or $S \vdash \square\psi. S$ has the modal numerical existence property if whenever $S \vdash \exists x\square\varphi(x)$ , there is some natural number n such that $S \vdash \square\varphi(\mathbf{n})$ . Under certain broadly applicable assumptions, these two properties are equivalent.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Integrating classical and intuitionistic type theory.Robert C. Flagg - 1986 - Annals of Pure and Applied Logic 32:27-51.
    Download  
     
    Export citation  
     
    Bookmark   10 citations