Switch to: References

Add citations

You must login to add citations.
  1. Informal proofs and mathematical rigour.Marianna Antonutti Marfori - 2010 - Studia Logica 96 (2):261-272.
    The aim of this paper is to provide epistemic reasons for investigating the notions of informal rigour and informal provability. I argue that the standard view of mathematical proof and rigour yields an implausible account of mathematical knowledge, and falls short of explaining the success of mathematical practice. I conclude that careful consideration of mathematical practice urges us to pursue a theory of informal provability.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • (1 other version)The Founding of Logic: Modern Interpretations of Aristotle’s Logic.John Corcoran - 1994 - Ancient Philosophy 14 (S1):9-24.
    Since the time of Aristotle's students, interpreters have considered Prior Analytics to be a treatise about deductive reasoning, more generally, about methods of determining the validity and invalidity of premise-conclusion arguments. People studied Prior Analytics in order to learn more about deductive reasoning and to improve their own reasoning skills. These interpreters understood Aristotle to be focusing on two epistemic processes: first, the process of establishing knowledge that a conclusion follows necessarily from a set of premises (that is, on the (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Soundness arguments for consistency and their epistemic value: A critical note.Matteo Zicchetti - 2024 - Philosophical Quarterly.
    Soundness Arguments for the consistency of a (mathematical) theory S aim to show that S is consistent by first showing or employing the fact that S is sound, i.e., that all theorems of S are true. Although soundness arguments are virtually unanimously accepted as valid and sound for most of our accepted theories, philosophers disagree about their epistemic value, i.e., about whether such arguments can be employed to improve our epistemic situation concerning questions of consistency. This article provides a (partial) (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The logics of a universal language.Eduardo Alejandro Barrio & Edson Bezerra - 2024 - Asian Journal of Philosophy 3 (1):1-22.
    Semantic paradoxes pose a real threat to logics that attempt to be capable of expressing their own semantic concepts. Particularly, Curry paradoxes seem to show that many solutions must change our intuitive concepts of truth or validity or impose limits on certain inferences that are intuitively valid. In this way, the logic of a universal language would have serious problems. In this paper, we explore a different solution that tries to avoid both limitations as much as possible. Thus, we argue (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Solutions to the Knower Paradox in the Light of Haack’s Criteria.Mirjam de Vos, Rineke Verbrugge & Barteld Kooi - 2023 - Journal of Philosophical Logic 52 (4):1101-1132.
    The knower paradox states that the statement ‘We know that this statement is false’ leads to inconsistency. This article presents a fresh look at this paradox and some well-known solutions from the literature. Paul Égré discusses three possible solutions that modal provability logic provides for the paradox by surveying and comparing three different provability interpretations of modality, originally described by Skyrms, Anderson, and Solovay. In this article, some background is explained to clarify Égré’s solutions, all three of which hinge on (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Shadows of Syntax: Revitalizing Logical and Mathematical Conventionalism.Jared Warren - 2020 - New York, USA: Oxford University Press.
    What is the source of logical and mathematical truth? This book revitalizes conventionalism as an answer to this question. Conventionalism takes logical and mathematical truth to have their source in linguistic conventions. This was an extremely popular view in the early 20th century, but it was never worked out in detail and is now almost universally rejected in mainstream philosophical circles. Shadows of Syntax is the first book-length treatment and defense of a combined conventionalist theory of logic and mathematics. It (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • (1 other version)The Necessity of Mathematics.Juhani Yli‐Vakkuri & John Hawthorne - 2018 - Noûs 52 (3):549-577.
    Some have argued for a division of epistemic labor in which mathematicians supply truths and philosophers supply their necessity. We argue that this is wrong: mathematics is committed to its own necessity. Counterfactuals play a starring role.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Naïve validity.Julien Murzi & Lorenzo Rossi - 2017 - Synthese 199 (Suppl 3):819-841.
    Beall and Murzi :143–165, 2013) introduce an object-linguistic predicate for naïve validity, governed by intuitive principles that are inconsistent with the classical structural rules. As a consequence, they suggest that revisionary approaches to semantic paradox must be substructural. In response to Beall and Murzi, Field :1–19, 2017) has argued that naïve validity principles do not admit of a coherent reading and that, for this reason, a non-classical solution to the semantic paradoxes need not be substructural. The aim of this paper (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • More Reflections on Consequence.Julien Murzi & Massimiliano Carrara - 2014 - Logique Et Analyse 57 (227):223-258.
    This special issue collects together nine new essays on logical consequence :the relation obtaining between the premises and the conclusion of a logically valid argument. The present paper is a partial, and opinionated,introduction to the contemporary debate on the topic. We focus on two influential accounts of consequence, the model-theoretic and the proof-theoretic, and on the seeming platitude that valid arguments necessarilypreserve truth. We briefly discuss the main objections these accounts face, as well as Hartry Field’s contention that such objections (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Paradox and Logical Revision. A Short Introduction.Julien Murzi & Massimiliano Carrara - 2015 - Topoi 34 (1):7-14.
    Logical orthodoxy has it that classical first-order logic, or some extension thereof, provides the right extension of the logical consequence relation. However, together with naïve but intuitive principles about semantic notions such as truth, denotation, satisfaction, and possibly validity and other naïve logical properties, classical logic quickly leads to inconsistency, and indeed triviality. At least since the publication of Kripke’s Outline of a theory of truth , an increasingly popular diagnosis has been to restore consistency, or at least non-triviality, by (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Closure of A Priori Knowability Under A Priori Knowable Material Implication.Jan Heylen - 2015 - Erkenntnis 80 (2):359-380.
    The topic of this article is the closure of a priori knowability under a priori knowable material implication: if a material conditional is a priori knowable and if the antecedent is a priori knowable, then the consequent is a priori knowable as well. This principle is arguably correct under certain conditions, but there is at least one counterexample when completely unrestricted. To deal with this, Anderson proposes to restrict the closure principle to necessary truths and Horsten suggests to restrict it (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The inexpressibility of validity.Julien Murzi - 2014 - Analysis 74 (1):65-81.
    Tarski's Undefinability of Truth Theorem comes in two versions: that no consistent theory which interprets Robinson's Arithmetic (Q) can prove all instances of the T-Scheme and hence define truth; and that no such theory, if sound, can even express truth. In this note, I prove corresponding limitative results for validity. While Peano Arithmetic already has the resources to define a predicate expressing logical validity, as Jeff Ketland has recently pointed out (2012, Validity as a primitive. Analysis 72: 421-30), no theory (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Philosophy of mathematics.Leon Horsten - 2008 - Stanford Encyclopedia of Philosophy.
    If mathematics is regarded as a science, then the philosophy of mathematics can be regarded as a branch of the philosophy of science, next to disciplines such as the philosophy of physics and the philosophy of biology. However, because of its subject matter, the philosophy of mathematics occupies a special place in the philosophy of science. Whereas the natural sciences investigate entities that are located in space and time, it is not at all obvious that this is also the case (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • A renaissance of empiricism in the recent philosophy of mathematics.Imre Lakatos - 1976 - British Journal for the Philosophy of Science 27 (3):201-223.
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • A cut-free modal theory of consequence.Edson Bezerra - 2025 - Asian Journal of Philosophy 4 (1):1-21.
    The cut-free validity theory $$\textsf{STV}$$ proposed by Barrio, Rosenblatt, and Tajer suffers from incompleteness with respect to its object language validity predicate. The validity predicate of $$\textsf{STV}$$ fails in validating some valid inferences of its underlying logic, the Strict Tolerant logic $$\textsf{ST}$$. In this paper, we will present the non-normal modal logic $$\textsf{ST}^{\Box \Diamond }$$ whose modalities $$\Box $$ and $$\Diamond $$ capture the tautologies/valid inferences and the consistent formulas of the logic $$\textsf{ST}$$, respectively. We show that $$\textsf{ST}^{\Box \Diamond }$$ (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • In Defense of the Implicit Commitment Thesis.Ethan Brauer - 2022 - Ergo: An Open Access Journal of Philosophy 9.
    The implicit commitment thesis is the claim that believing in a mathematical theory S carries an implicit commitment to further sentences not deductively entailed by the theory, such as the consistency sentence Con(S). I provide a new argument for this thesis based on the notion of mathematical certainty. I also reply to a recent argument by Walter Dean against the implicit commitment thesis, showing that my formulation of the thesis avoids the difficulties he raises.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)The Necessity of Mathematics.Juhani Yli-Vakkuri & John Hawthorne - 2020 - Noûs 54 (3):549-577.
    Some have argued for a division of epistemic labor in which mathematicians supply truths and philosophers supply their necessity. We argue that this is wrong: mathematics is committed to its own necessity. Counterfactuals play a starring role.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Human-Effective Computability†.Marianna Antonutti Marfori & Leon Horsten - 2018 - Philosophia Mathematica 27 (1):61-87.
    We analyse Kreisel’s notion of human-effective computability. Like Kreisel, we relate this notion to a concept of informal provability, but we disagree with Kreisel about the precise way in which this is best done. The resulting two different ways of analysing human-effective computability give rise to two different variants of Church’s thesis. These are both investigated by relating them to transfinite progressions of formal theories in the sense of Feferman.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematical Inference and Logical Inference.Yacin Hamami - 2018 - Review of Symbolic Logic 11 (4):665-704.
    The deviation of mathematical proof—proof in mathematical practice—from the ideal of formal proof—proof in formal logic—has led many philosophers of mathematics to reconsider the commonly accepted view according to which the notion of formal proof provides an accurate descriptive account of mathematical proof. This, in turn, has motivated a search for alternative accounts of mathematical proof purporting to be more faithful to the reality of mathematical practice. Yet, in order to develop and evaluate such alternative accounts, it appears as a (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Paradox of the Knower revisited.Walter Dean & Hidenori Kurokawa - 2014 - Annals of Pure and Applied Logic 165 (1):199-224.
    The Paradox of the Knower was originally presented by Kaplan and Montague [26] as a puzzle about the everyday notion of knowledge in the face of self-reference. The paradox shows that any theory extending Robinson arithmetic with a predicate K satisfying the factivity axiom K → A as well as a few other epistemically plausible principles is inconsistent. After surveying the background of the paradox, we will focus on a recent debate about the role of epistemic closure principles in the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Informal provability and dialetheism.Pawel Pawlowski & Rafal Urbaniak - 2023 - Theoria 89 (2):204-215.
    According to the dialetheist argument from the inconsistency of informal mathematics, the informal version of the Gödelian argument leads us to a true contradiction. On one hand, the dialetheist argues, we can prove that there is a mathematical claim that is neither provable nor refutable in informal mathematics. On the other, the proof of its unprovability is given in informal mathematics and proves that very sentence. We argue that the argument fails, because it relies on the unjustified and unlikely assumption (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the pure logic of justified belief.Daniela Schuster & Leon Horsten - 2022 - Synthese 200 (5):1-21.
    Justified belief is a core concept in epistemology and there has been an increasing interest in its logic over the last years. While many logical investigations consider justified belief as an operator, in this paper, we propose a logic for justified belief in which the relevant notion is treated as a predicate instead. Although this gives rise to the possibility of liar-like paradoxes, a predicate treatment allows for a rich and highly expressive framework, which lives up to the universal ambitions (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Explicit provability and constructive semantics.Sergei N. Artemov - 2001 - Bulletin of Symbolic Logic 7 (1):1-36.
    In 1933 Godel introduced a calculus of provability (also known as modal logic S4) and left open the question of its exact intended semantics. In this paper we give a solution to this problem. We find the logic LP of propositions and proofs and show that Godel's provability calculus is nothing but the forgetful projection of LP. This also achieves Godel's objective of defining intuitionistic propositional logic Int via classical proofs and provides a Brouwer-Heyting-Kolmogorov style provability semantics for Int which (...)
    Download  
     
    Export citation  
     
    Bookmark   116 citations  
  • Truth, Pretense and the Liar Paradox.Bradley Armour-Garb & James A. Woodbridge - 2015 - In T. Achourioti, H. Galinon, J. Martínez Fernández & K. Fujimoto (eds.), Unifying the Philosophy of Truth. Dordrecht: Imprint: Springer. pp. 339-354.
    In this paper we explain our pretense account of truth-talk and apply it in a diagnosis and treatment of the Liar Paradox. We begin by assuming that some form of deflationism is the correct approach to the topic of truth. We then briefly motivate the idea that all T-deflationists should endorse a fictionalist view of truth-talk, and, after distinguishing pretense-involving fictionalism (PIF) from error- theoretic fictionalism (ETF), explain the merits of the former over the latter. After presenting the basic framework (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Explicit provability and constructive semantics. [REVIEW]Jeremy D. Avigad - 2002 - Bulletin of Symbolic Logic 8 (3):432-432.
    Download  
     
    Export citation  
     
    Bookmark  
  • Gödel’s Incompleteness Theorem and the Anti-Mechanist Argument: Revisited.Yong Cheng - 2020 - Studia Semiotyczne 34 (1):159-182.
    This is a paper for a special issue of Semiotic Studies devoted to Stanislaw Krajewski’s paper. This paper gives some supplementary notes to Krajewski’s on the Anti-Mechanist Arguments based on Gödel’s incompleteness theorem. In Section 3, we give some additional explanations to Section 4–6 in Krajewski’s and classify some misunderstandings of Gödel’s incompleteness theorem related to AntiMechanist Arguments. In Section 4 and 5, we give a more detailed discussion of Gödel’s Disjunctive Thesis, Gödel’s Undemonstrability of Consistency Thesis and the definability (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Proof systems for BAT consequence relations.Pawel Pawlowski - 2018 - Logic Journal of the IGPL 26 (1):96-108.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Frege’s ‘On the Foundations of Geometry’ and Axiomatic Metatheory.Günther Eder - 2016 - Mind 125 (497):5-40.
    In a series of articles dating from 1903 to 1906, Frege criticizes Hilbert’s methodology of proving the independence and consistency of various fragments of Euclidean geometry in his Foundations of Geometry. In the final part of the last article, Frege makes his own proposal as to how the independence of genuine axioms should be proved. Frege contends that independence proofs require the development of a ‘new science’ with its own basic truths. This paper aims to provide a reconstruction of this (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Montague’s Paradox, Informal Provability, and Explicit Modal Logic.Walter Dean - 2014 - Notre Dame Journal of Formal Logic 55 (2):157-196.
    The goal of this paper is to explore the significance of Montague’s paradox—that is, any arithmetical theory $T\supseteq Q$ over a language containing a predicate $P$ satisfying $P\rightarrow \varphi $ and $T\vdash \varphi \,\therefore\,T\vdash P$ is inconsistent—as a limitative result pertaining to the notions of formal, informal, and constructive provability, in their respective historical contexts. To this end, the paradox is reconstructed in a quantified extension $\mathcal {QLP}$ of Artemov’s logic of proofs. $\mathcal {QLP}$ contains both explicit modalities $t:\varphi $ (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Informal and Absolute Proofs: Some Remarks from a Gödelian Perspective.Gabriella Crocco - 2019 - Topoi 38 (3):561-575.
    After a brief discussion of Kreisel’s notion of informal rigour and Myhill’s notion of absolute proof, Gödel’s analysis of the subject is presented. It is shown how Gödel avoids the notion of informal proof because such a use would contradict one of the senses of “formal” that Gödel wants to preserve. This Gödelian notion of “formal” is directly tied to his notion of absolute proof and to the question of the general applicability of concepts, in a way that overcomes both (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Reflecting in epistemic arithmetic.Leon Horsten - 1996 - Journal of Symbolic Logic 61 (3):788-801.
    An epistemic formalization of arithmetic is constructed in which certain non-trivial metatheoretical inferences about the system itself can be made. These inferences involve the notion of provability in principle, and cannot be made in any consistent extensions of Stewart Shapiro's system of epistemic arithmetic. The system constructed in the paper can be given a modal-structural interpretation.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Logic of informal provability with truth values.Pawel Pawlowski & Rafal Urbaniak - 2023 - Logic Journal of the IGPL 31 (1):172-193.
    Classical logic of formal provability includes Löb’s theorem, but not reflection. In contrast, intuitions about the inferential behavior of informal provability (in informal mathematics) seem to invalidate Löb’s theorem and validate reflection (after all, the intuition is, whatever mathematicians prove holds!). We employ a non-deterministic many-valued semantics and develop a modal logic T-BAT of an informal provability operator, which indeed does validate reflection and invalidates Löb’s theorem. We study its properties and its relation to known provability-related paradoxical arguments. We also (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Proving that the Mind Is Not a Machine?Johannes Stern - 2018 - Thought: A Journal of Philosophy 7 (2):81-90.
    This piece continues the tradition of arguments by John Lucas, Roger Penrose and others to the effect that the human mind is not a machine. Kurt Gödel thought that the intensional paradoxes stand in the way of proving that the mind is not a machine. According to Gödel, a successful proof that the mind is not a machine would require a solution to the intensional paradoxes. We provide what might seem to be a partial vindication of Gödel and show that (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • 1996 European Summer Meeting of the Association for Symbolic Logic.G. Mints, M. Otero, S. Ronchi Della Rocca & K. Segerberg - 1997 - Bulletin of Symbolic Logic 3 (2):242-277.
    Download  
     
    Export citation  
     
    Bookmark  
  • Non-contractability and Revenge.Julien Murzi & Lorenzo Rossi - 2020 - Erkenntnis 85 (4):905-917.
    It is often argued that fully structural theories of truth and related notions are incapable of expressing a nonstratified notion of defectiveness. We argue that recently much-discussed non-contractive theories suffer from the same expressive limitation, provided they identify the defective sentences with the sentences that yield triviality if they are assumed to satisfy structural contraction.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Provability in principle and controversial constructivistic principles.Leon Horsten - 1997 - Journal of Philosophical Logic 26 (6):635-660.
    New epistemic principles are formulated in the language of Shapiro's system of Epistemic Arithmetic. It is argued that some plausibility can be attributed to these principles. The relations between these principles and variants of controversial constructivistic principles are investigated. Special attention is given to variants of the intuitionistic version of Church's thesis and to variants of Markov's principle.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Informal Provability, First-Order BAT Logic and First Steps Towards a Formal Theory of Informal Provability.Pawel Pawlowski & Rafal Urbaniak - forthcoming - Logic and Logical Philosophy:1-27.
    BAT is a logic built to capture the inferential behavior of informal provability. Ultimately, the logic is meant to be used in an arithmetical setting. To reach this stage it has to be extended to a first-order version. In this paper we provide such an extension. We do so by constructing non-deterministic three-valued models that interpret quantifiers as some sorts of infinite disjunctions and conjunctions. We also elaborate on the semantical properties of the first-order system and consider a couple of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The fragilities of logic.Rubin Gotesky - 1964 - Philosophia Mathematica (2):67-88.
    Download  
     
    Export citation  
     
    Bookmark  
  • Platonistic formalism.L. Horsten - 2001 - Erkenntnis 54 (2):173-194.
    The present paper discusses a proposal which says,roughly and with several qualifications, that thecollection of mathematical truths is identical withthe set of theorems of ZFC. It is argued that thisproposal is not as easily dismissed as outright falseor philosophically incoherent as one might think. Some morals of this are drawn for the concept ofmathematical knowledge.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Paradoxes of Interaction?Johannes Stern & Martin Fischer - 2015 - Journal of Philosophical Logic 44 (3):287-308.
    Since Montague’s work it is well known that treating a single modality as a predicate may lead to paradox. In their paper “No Future”, Horsten and Leitgeb show that if the two temporal modalities are treated as predicates paradox might arise as well. In our paper we investigate whether paradoxes of multiple modalities, such as the No Future paradox, are genuinely new paradoxes or whether they “reduce” to the paradoxes of single modalities. In order to address this question we develop (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (2 other versions)1996 European Summer Meeting of the Association for Symbolic Logic.Daniel Lascar - 1997 - Bulletin of Symbolic Logic 3 (2):242-277.
    Download  
     
    Export citation  
     
    Bookmark