Switch to: Citations

Add references

You must login to add references.
  1. Polynomial size proofs of the propositional pigeonhole principle.Samuel R. Buss - 1987 - Journal of Symbolic Logic 52 (4):916-927.
    Cook and Reckhow defined a propositional formulation of the pigeonhole principle. This paper shows that there are Frege proofs of this propositional pigeonhole principle of polynomial size. This together with a result of Haken gives another proof of Urquhart's theorem that Frege systems have an exponential speedup over resolution. We also discuss connections to provability in theories of bounded arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Lower Bounds for Modal Logics.Pavel Hrubeš - 2007 - Journal of Symbolic Logic 72 (3):941 - 958.
    We give an exponential lower bound on number of proof-lines in the proof system K of modal logic, i.e., we give an example of K-tautologies ψ₁, ψ₂,... s.t. every K-proof of ψi must have a number of proof-lines exponential in terms of the size of ψi. The result extends, for the same sequence of K-tautologies, to the systems K4, Gödel—Löb's logic, S and S4. We also determine some speed-up relations between different systems of modal logic on formulas of modal-depth one.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Interpolation theorems, lower Bounds for proof systems, and independence results for bounded arithmetic.Jan Krajíček - 1997 - Journal of Symbolic Logic 62 (2):457-486.
    A proof of the (propositional) Craig interpolation theorem for cut-free sequent calculus yields that a sequent with a cut-free proof (or with a proof with cut-formulas of restricted form; in particular, with only analytic cuts) with k inferences has an interpolant whose circuit-size is at most k. We give a new proof of the interpolation theorem based on a communication complexity approach which allows a similar estimate for a larger class of proofs. We derive from it several corollaries: (1) Feasible (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • The complexity of the disjunction and existential properties in intuitionistic logic.Sam Buss & Grigori Mints - 1999 - Annals of Pure and Applied Logic 99 (1-3):93-104.
    This paper considers the computational complexity of the disjunction and existential properties of intuitionistic logic. We prove that the disjunction property holds feasibly for intuitionistic propositional logic; i.e., from a proof of A v B, a proof either of A or of B can be found in polynomial time. For intuitionistic predicate logic, we prove superexponential lower bounds for the disjunction property, namely, there is a superexponential lower bound on the time required, given a proof of A v B, to (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • On the computational content of intuitionistic propositional proofs.Samuel R. Buss & Pavel Pudlák - 2001 - Annals of Pure and Applied Logic 109 (1-2):49-64.
    The paper proves refined feasibility properties for the disjunction property of intuitionistic propositional logic. We prove that it is possible to eliminate all cuts from an intuitionistic proof, propositional or first-order, without increasing the Horn closure of the proof. We obtain a polynomial time, interactive, realizability algorithm for propositional intuitionistic proofs. The feasibility of the disjunction property is proved for sequents containing Harrop formulas. Under hardness assumptions for NP and for factoring, it is shown that the intuitionistic propositional calculus does (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations