Switch to: Citations

Add references

You must login to add references.
  1. Hypersequent Calculi for S5: The Methods of Cut Elimination.Kaja Bednarska & Andrzej Indrzejczak - 2015 - Logic and Logical Philosophy 24 (3):277–311.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Cut Elimination for GLS Using the Terminability of its Regress Process.Jude Brighton - 2016 - Journal of Philosophical Logic 45 (2):147-153.
    The system GLS, which is a modal sequent calculus system for the provability logic GL, was introduced by G. Sambin and S. Valentini in Journal of Philosophical Logic, 11, 311–342,, and in 12, 471–476,, the second author presented a syntactic cut-elimination proof for GLS. In this paper, we will use regress trees in order to present a simpler and more intuitive syntactic cut derivability proof for GLS1, which is a variant of GLS without the cut rule.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A simple propositional S5 tableau system.Melvin Fitting - 1999 - Annals of Pure and Applied Logic 96 (1-3):107-115.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Simple Decision Procedure for S5 in Standard Cut-Free Sequent Calculus.Andrzej Indrzejczak - 2016 - Bulletin of the Section of Logic 45 (2).
    In the paper a decision procedure for S5 is presented which uses a cut-free sequent calculus with additional rules allowing a reduction to normal modal forms. It utilizes the fact that in S5 every formula is equivalent to some 1-degree formula, i.e. a modally-flat formula with modal functors having only boolean formulas in its scope. In contrast to many sequent calculi for S5 the presented system does not introduce any extra devices. Thus it is a standard version of SC but (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Logic for Computer Science: Foundations of Automatic Theorem Proving.Jean H. Gallier - 1986 - HarperCollins Publishers.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • A Short and Readable Proof of Cut Elimination for Two First-Order Modal Logics.Feng Gao & George Tourlakis - 2015 - Bulletin of the Section of Logic 44 (3/4):131-147.
    A well established technique toward developing the proof theory of a Hilbert-style modal logic is to introduce a Gentzen-style equivalent (a Gentzenisation), then develop the proof theory of the latter, and finally transfer the metatheoretical results to the original logic (e.g., [1, 6, 8, 18, 10, 12]). In the first-order modal case, on one hand we know that the Gentzenisation of the straightforward first-order extension of GL, the logic QGL, admits no cut elimination (if the rule is included as primitive; (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Proof Methods for Modal and Intuitionistic Logics.Melvin Chris Fitting - 1983 - Dordrecht and Boston: Reidel.
    "Necessity is the mother of invention. " Part I: What is in this book - details. There are several different types of formal proof procedures that logicians have invented. The ones we consider are: 1) tableau systems, 2) Gentzen sequent calculi, 3) natural deduction systems, and 4) axiom systems. We present proof procedures of each of these types for the most common normal modal logics: S5, S4, B, T, D, K, K4, D4, KB, DB, and also G, the logic that (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations