Switch to: Citations

Add references

You must login to add references.
  1. Point, line, and surface, as sets of solids.Theodore de Laguna - 1922 - Journal of Philosophy 19 (17):449-461.
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • Boolean connection algebras: A new approach to the Region-Connection Calculus.J. G. Stell - 2000 - Artificial Intelligence 122 (1-2):111-136.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Topological Representations of Distributive Lattices and Brouwerian Logics.M. H. Stone - 1938 - Journal of Symbolic Logic 3 (2):90-91.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Distributive Lattices.Raymond Balbes & Philip Dwinger - 1977 - Journal of Symbolic Logic 42 (4):587-588.
    Download  
     
    Export citation  
     
    Bookmark   163 citations  
  • A Proximity Approach to Some Region-Based Theories of Space.Dimiter Vakarelov, Georgi Dimov, Ivo Düntsch & Brandon Bennett - 2002 - Journal of Applied Non-Classical Logics 12 (3-4):527-559.
    This paper is a continuation of [VAK 01]. The notion of local connection algebra, based on the primitive notions of connection and boundedness, is introduced. It is slightly different but equivalent to Roeper's notion of region-based topology [ROE 97]. The similarity between the local proximity spaces of Leader [LEA 67] and local connection algebras is emphasized. Machinery, analogous to that introduced by Efremovi?c [EFR 51],[EFR 52], Smirnov [SMI 52] and Leader [LEA 67] for proximity and local proximity spaces, is developed. (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • A mereotopology based on sequent algebras.Dimiter Vakarelov - 2017 - Journal of Applied Non-Classical Logics 27 (3-4):342-364.
    Mereotopology is an extension of mereology with some relations of topological nature like contact. An algebraic counterpart of mereotopology is the notion of contact algebra which is a Boolean algebra whose elements are considered to denote spatial regions, extended with a binary relation of contact between regions. Although the language of contact algebra is quite expressive to define many useful mereological relations and mereotopological relations, there are, however, some interesting mereotopological relations which are not definable in it. Such are, for (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Process and Reality. By A. E. Murphy. [REVIEW]A. N. Whitehead - 1929 - International Journal of Ethics 40:433.
    Download  
     
    Export citation  
     
    Bookmark   168 citations  
  • A Topological Constraint Language with Component Counting.Ian Pratt-Hartmann - 2002 - Journal of Applied Non-Classical Logics 12 (3-4):441-467.
    A topological constraint language is a formal language whose variables range over certain subsets of topological spaces, and whose nonlogical primitives are interpreted as topological relations and functions taking these subsets as arguments. Thus, topological constraint languages typically allow us to make assertions such as “region V1 touches the boundary of region V2”, “region V3 is connected” or “region V4 is a proper part of the closure of region V5”. A formula f in a topological constraint language is said to (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (5 other versions)Foreword.Philippe Balbiani - 2002 - Journal of Applied Non-Classical Logics 12 (3-4):317-318.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Topology, connectedness, and modal logic.Roman Kontchakov, Ian Pratt-Hartmann, Frank Wolter & Michael Zakharyaschev - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 151-176.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Topology, connectedness, and modal logic.Roman Kontchakov, Ian Pratt-Hartmann, Frank Wolter & Michael Zakharyaschev - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 151-176.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Logics of Space with Connectedness Predicates: Complete Axiomatizations.Tinko Tinchev & Dimiter Vakarelov - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 434-453.
    Download  
     
    Export citation  
     
    Bookmark   2 citations