Switch to: Citations

Add references

You must login to add references.
  1. Borel equivalence relations and classifications of countable models.Greg Hjorth & Alexander S. Kechris - 1996 - Annals of Pure and Applied Logic 82 (3):221-272.
    Using the theory of Borel equivalence relations we analyze the isomorphism relation on the countable models of a theory and develop a framework for measuring the complexity of possible complete invariants for isomorphism.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Borel equivalence relations induced by actions of the symmetric group.Greg Hjorth, Alexander S. Kechris & Alain Louveau - 1998 - Annals of Pure and Applied Logic 92 (1):63-112.
    We consider Borel equivalence relations E induced by actions of the infinite symmetric group, or equivalently the isomorphism relation on classes of countable models of bounded Scott rank. We relate the descriptive complexity of the equivalence relation to the nature of its complete invariants. A typical theorem is that E is potentially Π03 iff the invariants are countable sets of reals, it is potentially Π04 iff the invariants are countable sets of countable sets of reals, and so on. The proofs (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • New directions in descriptive set theory.Alexander S. Kechris - 1999 - Bulletin of Symbolic Logic 5 (2):161-174.
    §1. I will start with a quick definition of descriptive set theory: It is the study of the structure of definable sets and functions in separable completely metrizable spaces. Such spaces are usually called Polish spaces. Typical examples are ℝn, ℂn, Hilbert space and more generally all separable Banach spaces, the Cantor space 2ℕ, the Baire space ℕℕ, the infinite symmetric group S∞, the unitary group, the group of measure preserving transformations of the unit interval, etc.In this theory sets are (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Amenable equivalence relations and Turing degrees.Alexander S. Kechris - 1991 - Journal of Symbolic Logic 56 (1):182-194.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On the complexity of the classification problem for torsion-free Abelian groups of finite rank.Simon Thomas - 2001 - Bulletin of Symbolic Logic 7 (3):329-344.
    In this paper, we shall discuss some recent contributions to the project [15, 14, 2, 18, 22, 23] of explaining why no satisfactory system of complete invariants has yet been found for the torsion-free abelian groups of finite rank n ≥ 2. Recall that, up to isomorphism, the torsion-free abelian groups of rank n are exactly the additive subgroups of the n-dimensional vector space ℚn which contain n linearly independent elements. Thus the collection of torsion-free abelian groups of rank at (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Actions of non-compact and non-locally compact polish groups.Slawomir Solecki - 2000 - Journal of Symbolic Logic 65 (4):1881-1894.
    We show that each non-compact Polish group admits a continuous action on a Polish space with non-smooth orbit equivalence relation. We actually construct a free such action. Thus for a Polish group compactness is equivalent to all continuous free actions of this group being smooth. This answers a question of Kechris. We also establish results relating local compactness of the group with its inability to induce orbit equivalence relations not reducible to countable Borel equivalence relations. Generalizing a result of Hjorth, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Amenable versus hyperfinite borel equivalence relations.Alexander S. Kechris - 1993 - Journal of Symbolic Logic 58 (3):894-907.
    LetXbe a standard Borel space, and letEbe acountableBorel equivalence relation onX, i.e., a Borel equivalence relationEfor which every equivalence class [x]Eis countable. By a result of Feldman-Moore [FM],Eis induced by the orbits of a Borel action of a countable groupGonX.The structure of general countable Borel equivalence relations is very little understood. However, a lot is known for the particularly important subclass consisting of hyperfinite relations. A countable Borel equivalence relation is calledhyperfiniteif it is induced by a Borel ℤ-action, i.e., by (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation