Switch to: References

Add citations

You must login to add citations.
  1. Degree spectra and computable dimensions in algebraic structures.Denis R. Hirschfeldt, Bakhadyr Khoussainov, Richard A. Shore & Arkadii M. Slinko - 2002 - Annals of Pure and Applied Logic 115 (1-3):71-113.
    Whenever a structure with a particularly interesting computability-theoretic property is found, it is natural to ask whether similar examples can be found within well-known classes of algebraic structures, such as groups, rings, lattices, and so forth. One way to give positive answers to this question is to adapt the original proof to the new setting. However, this can be an unnecessary duplication of effort, and lacks generality. Another method is to code the original structure into a structure in the given (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Countable borel equivalence relations.S. Jackson, A. S. Kechris & A. Louveau - 2002 - Journal of Mathematical Logic 2 (01):1-80.
    This paper develops the foundations of the descriptive set theory of countable Borel equivalence relations on Polish spaces with particular emphasis on the study of hyperfinite, amenable, treeable and universal equivalence relations.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Borel equivalence relations induced by actions of the symmetric group.Greg Hjorth, Alexander S. Kechris & Alain Louveau - 1998 - Annals of Pure and Applied Logic 92 (1):63-112.
    We consider Borel equivalence relations E induced by actions of the infinite symmetric group, or equivalently the isomorphism relation on classes of countable models of bounded Scott rank. We relate the descriptive complexity of the equivalence relation to the nature of its complete invariants. A typical theorem is that E is potentially Π03 iff the invariants are countable sets of reals, it is potentially Π04 iff the invariants are countable sets of countable sets of reals, and so on. The proofs (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • New dichotomies for borel equivalence relations.Greg Hjorth & Alexander S. Kechris - 1997 - Bulletin of Symbolic Logic 3 (3):329-346.
    We announce two new dichotomy theorems for Borel equivalence relations, and present the results in context by giving an overview of related recent developments.§1. Introduction. For X a Polish space and E a Borel equivalence relation on X, a classification of X up to E-equivalence consists of finding a set of invariants I and a map c : X → I such that xEy ⇔ c = c. To be of any value we would expect I and c to be (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Continuous Logic and Borel Equivalence Relations.Andreas Hallbäck, Maciej Malicki & Todor Tsankov - 2023 - Journal of Symbolic Logic 88 (4):1725-1752.
    We study the complexity of isomorphism of classes of metric structures using methods from infinitary continuous logic. For Borel classes of locally compact structures, we prove that if the equivalence relation of isomorphism is potentially $\mathbf {\Sigma }^0_2$, then it is essentially countable. We also provide an equivalent model-theoretic condition that is easy to check in practice. This theorem is a common generalization of a result of Hjorth about pseudo-connected metric spaces and a result of Hjorth–Kechris about discrete structures. As (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • New directions in descriptive set theory.Alexander S. Kechris - 1999 - Bulletin of Symbolic Logic 5 (2):161-174.
    §1. I will start with a quick definition of descriptive set theory: It is the study of the structure of definable sets and functions in separable completely metrizable spaces. Such spaces are usually called Polish spaces. Typical examples are ℝn, ℂn, Hilbert space and more generally all separable Banach spaces, the Cantor space 2ℕ, the Baire space ℕℕ, the infinite symmetric group S∞, the unitary group, the group of measure preserving transformations of the unit interval, etc.In this theory sets are (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Superrigidity and countable Borel equivalence relations.Simon Thomas - 2003 - Annals of Pure and Applied Logic 120 (1-3):237-262.
    We formulate a Borel version of a corollary of Furman's superrigidity theorem for orbit equivalence and present a number of applications to the theory of countable Borel equivalence relations. In particular, we prove that the orbit equivalence relations arising from the natural actions of on the projective planes over the various p-adic fields are pairwise incomparable with respect to Borel reducibility.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • New jump operators on equivalence relations.John D. Clemens & Samuel Coskey - 2022 - Journal of Mathematical Logic 22 (3).
    We introduce a new family of jump operators on Borel equivalence relations; specifically, for each countable group [Formula: see text] we introduce the [Formula: see text]-jump. We study the elementary properties of the [Formula: see text]-jumps and compare them with other previously studied jump operators. One of our main results is to establish that for many groups [Formula: see text], the [Formula: see text]-jump is proper in the sense that for any Borel equivalence relation [Formula: see text] the [Formula: see (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Polish metric spaces: Their classification and isometry groups.John D. Clemens, Su Gao & Alexander S. Kechris - 2001 - Bulletin of Symbolic Logic 7 (3):361-375.
    § 1. Introduction. In this communication we present some recent results on the classification of Polish metric spaces up to isometry and on the isometry groups of Polish metric spaces. A Polish metric space is a complete separable metric space.Our first goal is to determine the exact complexity of the classification problem of general Polish metric spaces up to isometry. This work was motivated by a paper of Vershik [1998], where he remarks : “The classification of Polish spaces up to (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On the complexity of the classification problem for torsion-free Abelian groups of finite rank.Simon Thomas - 2001 - Bulletin of Symbolic Logic 7 (3):329-344.
    In this paper, we shall discuss some recent contributions to the project [15, 14, 2, 18, 22, 23] of explaining why no satisfactory system of complete invariants has yet been found for the torsion-free abelian groups of finite rank n ≥ 2. Recall that, up to isomorphism, the torsion-free abelian groups of rank n are exactly the additive subgroups of the n-dimensional vector space ℚn which contain n linearly independent elements. Thus the collection of torsion-free abelian groups of rank at (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Infinite Time Decidable Equivalence Relation Theory.Samuel Coskey & Joel David Hamkins - 2011 - Notre Dame Journal of Formal Logic 52 (2):203-228.
    We introduce an analogue of the theory of Borel equivalence relations in which we study equivalence relations that are decidable by an infinite time Turing machine. The Borel reductions are replaced by the more general class of infinite time computable functions. Many basic aspects of the classical theory remain intact, with the added bonus that it becomes sensible to study some special equivalence relations whose complexity is beyond Borel or even analytic. We also introduce an infinite time generalization of the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The conjugacy problem for the automorphism group of the random graph.Samuel Coskey, Paul Ellis & Scott Schneider - 2011 - Archive for Mathematical Logic 50 (1-2):215-221.
    We prove that the conjugacy problem for the automorphism group of the random graph is Borel complete, and discuss the analogous problem for some other countably categorical structures.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The complexity of classification problems for models of arithmetic.Samuel Coskey & Roman Kossak - 2010 - Bulletin of Symbolic Logic 16 (3):345-358.
    We observe that the classification problem for countable models of arithmetic is Borel complete. On the other hand, the classification problems for finitely generated models of arithmetic and for recursively saturated models of arithmetic are Borel; we investigate the precise complexity of each of these. Finally, we show that the classification problem for pairs of recursively saturated models and for automorphisms of a fixed recursively saturated model are Borel complete.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The conjugacy problem for automorphism groups of countable homogeneous structures.Samuel Coskey & Paul Ellis - 2016 - Mathematical Logic Quarterly 62 (6):580-589.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The classification problem for p-local torsion-free Abelian groups of rank two.Greg Hjorth & Simon Thomas - 2006 - Journal of Mathematical Logic 6 (2):233-251.
    We prove that if p ≠ q are distinct primes, then the classification problems for p-local and q-local torsion-free abelian groups of rank two are incomparable with respect to Borel reducibility.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A complicated ω-stable depth 2 theory.Martin Koerwien - 2011 - Journal of Symbolic Logic 76 (1):47 - 65.
    We present a countable complete first order theory T which is model theoretically very well behaved: it eliminates quantifiers, is ω-stable, it has NDOP and is shallow of depth two. On the other hand, there is no countable bound on the Scott heights of its countable models, which implies that the isomorphism relation for countable models is not Borel.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Comparing Borel Reducibility and Depth of an ω-Stable Theory.Martin Koerwien - 2009 - Notre Dame Journal of Formal Logic 50 (4):365-380.
    In "A proof of Vaught's conjecture for ω-stable theories," the notions of ENI-NDOP and eni-depth have been introduced, which are variants of the notions of NDOP and depth known from Shelah's classification theory. First, we show that for an ω-stable first-order complete theory, ENI-NDOP allows tree decompositions of countable models. Then we discuss the relationship between eni-depth and the complexity of the isomorphism relation for countable models of such a theory in terms of Borel reducibility as introduced by Friedman and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Diagonal Actions and Borel Equivalence Relations.Longyun Ding & Su Gao - 2006 - Journal of Symbolic Logic 71 (4):1081 - 1096.
    We investigate diagonal actions of Polish groups and the related intersection operator on closed subgroups of the acting group. The Borelness of the diagonal orbit equivalence relation is characterized and is shown to be connected with the Borelness of the intersection operator. We also consider relatively tame Polish groups and give a characterization of them in the class of countable products of countable abelian groups. Finally an example of a logic action is considered and its complexity in the Borel reducbility (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Isomorphism of Locally Compact Polish Metric Structures.Maciej Malicki - 2024 - Journal of Symbolic Logic 89 (2):646-664.
    We study the isomorphism relation on Borel classes of locally compact Polish metric structures. We prove that isomorphism on such classes is always classifiable by countable structures (equivalently: Borel reducible to graph isomorphism), which implies, in particular, that isometry of locally compact Polish metric spaces is Borel reducible to graph isomorphism. We show that potentially $\boldsymbol {\Pi }^{0}_{\alpha + 1}$ isomorphism relations are Borel reducible to equality on hereditarily countable sets of rank $\alpha $, $\alpha \geq 2$. We also study (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Coarse groups, and the isomorphism problem for oligomorphic groups.André Nies, Philipp Schlicht & Katrin Tent - 2021 - Journal of Mathematical Logic 22 (1).
    Let S∞ denote the topological group of permutations of the natural numbers. A closed subgroup G of S∞ is called oligomorphic if for each n, its natural action on n-tuples of natural numbers has onl...
    Download  
     
    Export citation  
     
    Bookmark  
  • Classifying Invariants for E1: A Tail of a Generic Real.Assaf Shani - 2024 - Notre Dame Journal of Formal Logic 65 (3):333-356.
    Let E be an analytic equivalence relation on a Polish space. We introduce a framework for studying the possible “reasonable” complete classifications and the complexity of possible classifying invariants for E, such that: (1) the standard results and intuitions regarding classifications by countable structures are preserved in this framework; (2) this framework respects Borel reducibility; and (3) this framework allows for a precise study of the possible invariants of certain equivalence relations which are not classifiable by countable structures, such as (...))
    Download  
     
    Export citation  
     
    Bookmark  
  • Equivalence of generics.Iian B. Smythe - 2022 - Archive for Mathematical Logic 61 (5):795-812.
    Given a countable transitive model of set theory and a partial order contained in it, there is a natural countable Borel equivalence relation on generic filters over the model; two are equivalent if they yield the same generic extension. We examine the complexity of this equivalence relation for various partial orders, focusing on Cohen and random forcing. We prove, among other results, that the former is an increasing union of countably many hyperfinite Borel equivalence relations, and hence is amenable, while (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A descriptive view of combinatorial group theory.Simon Thomas - 2011 - Bulletin of Symbolic Logic 17 (2):252-264.
    In this paper, we will prove the inevitable non-uniformity of two constructions from combinatorial group theory related to the word problem for finitely generated groups and the Higman—Neumann—Neumann Embedding Theorem.
    Download  
     
    Export citation  
     
    Bookmark